

Structural Calculations for:

East Mercer Residence - Parcel 1

8375 East Mercer Way, Mercer Island, WA

Client: Ripple Design Studio Inc.

Code: 2015 International Building Code

Table of Contents

- C1 Design Criteria
- L1 L30 Lateral Calculations
- F1 F15 Framing Calculations
- Ret1 Ret40 Retaining Wall Calculations

Scope: Single Family Residence Addition (Formerly Known as Zheng Residence 1)

July 17, 2017 Revised October 5, 2017

Seismic Design Loads (ASCE 7-10)

for a Wood Framed Structure

RISK CATEGORY II

OCCUPANCY CAT. 1 Table 1-1 IMP. FACTOR 1 Table 11.5-1 SITE CLASS Table 20.3-1

R = 6.5 Table 12.2-1

SEISMIC

DESIGN CATEGORY D 11.6.1.1

S_s = 1.461 $S_1 = 0.556$

 $F_a = 1.00$ Table 11.4-1 $F_{v} \approx 1.50$

S_{DS}= 0.974 $S_{D1} = 0.556$

Table 11.4-2 Seismic Dead Load: 15 PST Roof

10 psr Floor 20^{psr} Walls

Cs_{ULT}= 0.150 Egn. 12.8-2

Cs_{ASD}= 0.107

 $W_{roof} = 15 + 1 = 25^{psf}$

 $W_{floor} = 10 + 10 + 10 = 30^{psf}$

Vertical Design Loads

<u>Criteria</u> **ASCE 7-10** IBC 2012

Dead Loads

Roof (Composit) 2.5 psf	Flooring psf
1/2" Ply 15 psf	Sheathing 2.3 psf
Rafter/Truss 2 psf Insulation f psf	Joist 26 psf
5/8" GWB 3 psf	5/8" GWB 31 psf
Misc./Mech. 2 psf	Misc. Mech 10 psf
12.1 psf	_ 10 psf

Live Loads

House

Snow 25 psf floor 40 psf

Use 15 psf

Soil Bearing

0 psf

Project:

Zheng Residence 1

Use

15 psf

Date: 12/16/2015

Design:

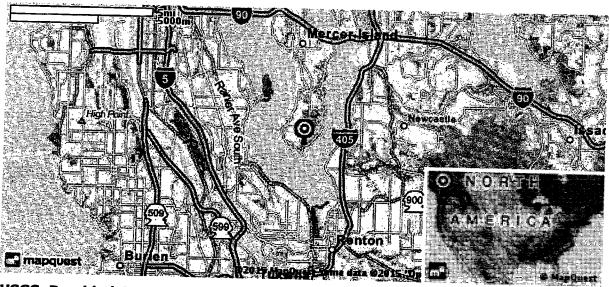
CRB

USGS Design Maps Summary Report

User-Specified Input

Report Title Seismic Response

Thu October 29, 2015 00:30:10 UTC


Building Code Reference Document 2012 International Building Code

(which utilizes USGS hazard data available in 2008)

Site Coordinates 47.52901°N, 122.22515°W

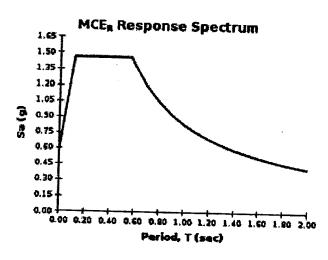
Site Soil Classification Site Class D - "Stiff Soil"

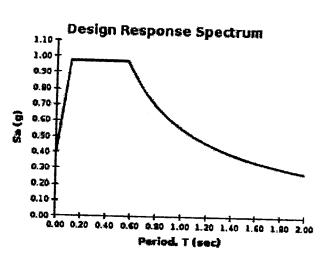
Risk Category I/II/III

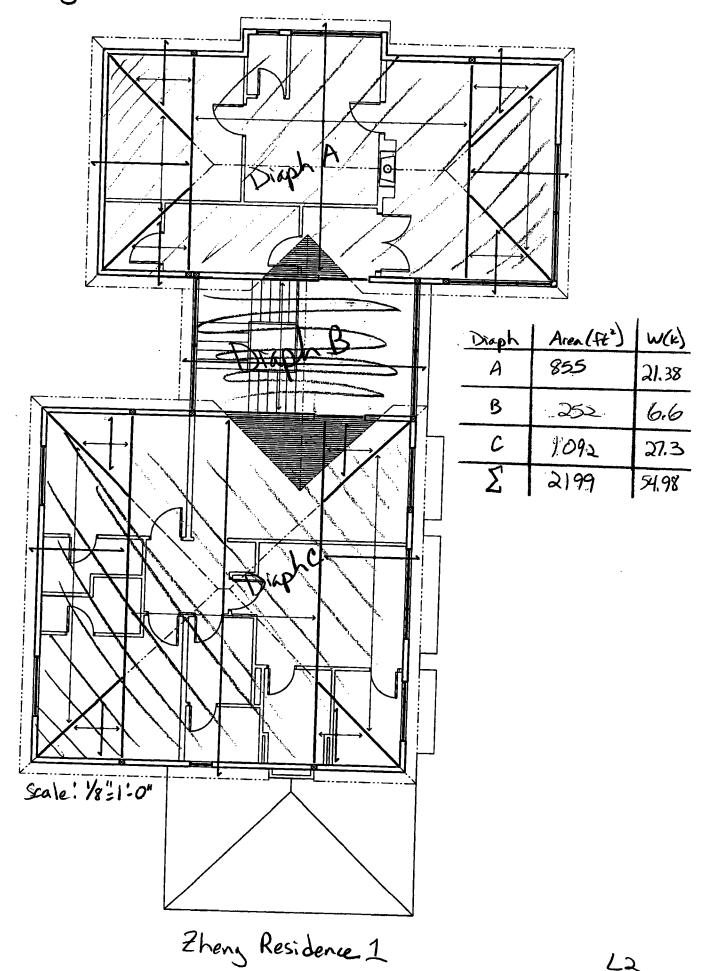
USGS-Provided Output

$$S_s = 1.461 g$$

$$S_{HS} = 1.461 g$$

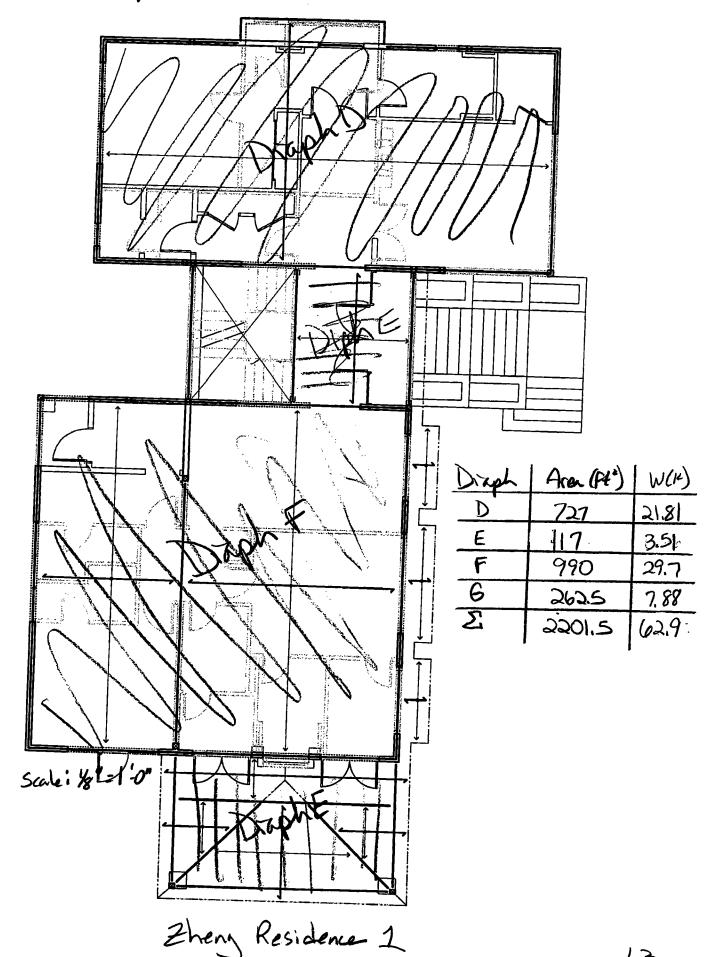

$$S_{06} = 0.974 g$$

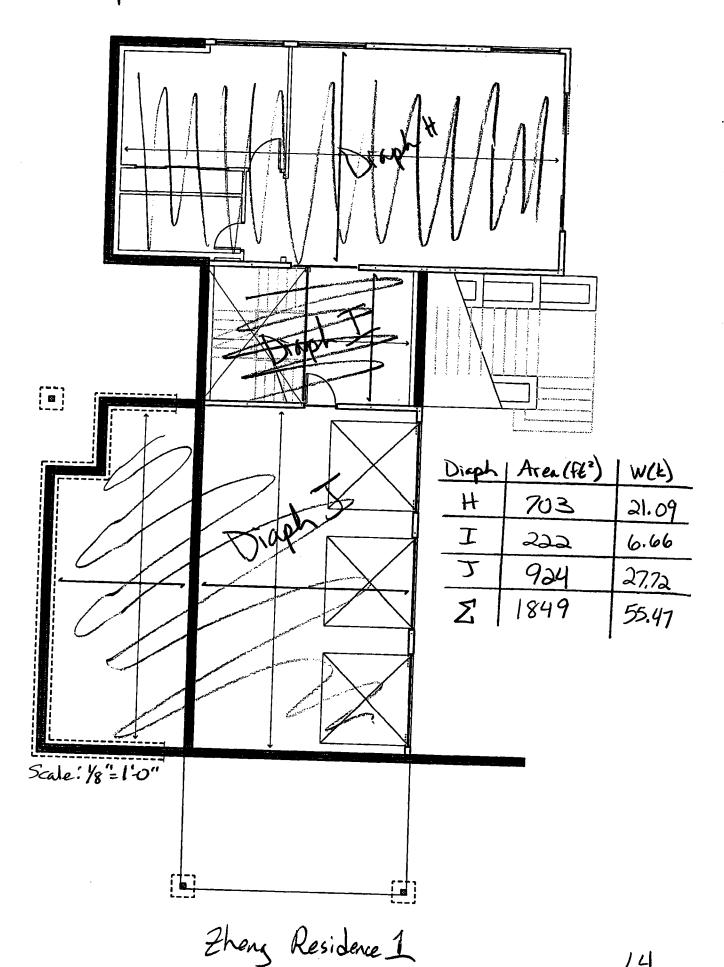

$$S_1 = 0.556 \text{ g}$$


$$S_{\text{H1}} = 0.833 \text{ g}$$

$$S_{D1} = 0.556 g$$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.





L2

Second Floor Diaph

13

14

Seismic Analysis (ASCE 7-10)

C - Margariti - Margariti		· · · · · · · · · · · · · · · · · · ·
$S_s = 1.461$ $F_a = 1.00$	S _{ms} = 1.46	$S_{Ds} = 0.97$
$S_1 = 0.56$ $F_v = 1.50$	$S_{m1} = 0.834$	\$ =0.56
	IO:03-4	$S_{D1} = 0.56 $

Site Class =	D	<u> </u>
Mean Roof Height =	32.5	ft
T=	0.27	sec
R =	6.5	
l=	1.0	
rho =		
	0.150	
	173.35	K
Allowable Base Shear V =	18.19	К

House

Level	Wx (K)	hx (ft)	Wxhx	Cvx	Fx (K)
Roof	54.98	ASSESSMENT OF THE PARTY OF THE	1677	0.47	8.6
Second	62.9	+20.5	1289	0.36	6.6
First	.55,47	10.5	582	0.16	3.0
Sum	173.35		3549	1.0	18.2

Full House Load Zheng Residence 1

Seismic Analysis (ASCE 7-10)

6			
$S_s = 1.461$	$F_a = 1.00$	S _{ms} = 1.46	$S_{Ds} = 0.97$
S ₁ = 0.56	F _v = 1.50	$S_{m1} = 0.834$	
		-m1 0:034	$S_{D1} = 0.56$

Site Class =	D	
Mean Roof Height =	32.5	ft
T=	0.27	sec
R =	6.5	
=	1.0	
rho =	1.0	
Cs =	0.150	
	101.02	K
Allowable Base Shear V =	10.60	К

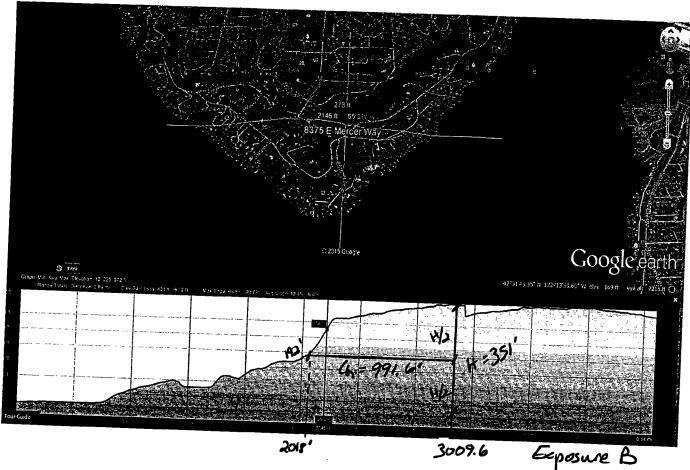
House

Level	Wx (K)	hx (ft)	Wxhx	Cvx	Fx (K)
Roof	30.63	30.5	934		
Second	39.34	20.5	806		
First	31.05	10.5	326		
Sum	101.02		2067		

West Side of Home

Seismic Analysis (ASCE 7-10)

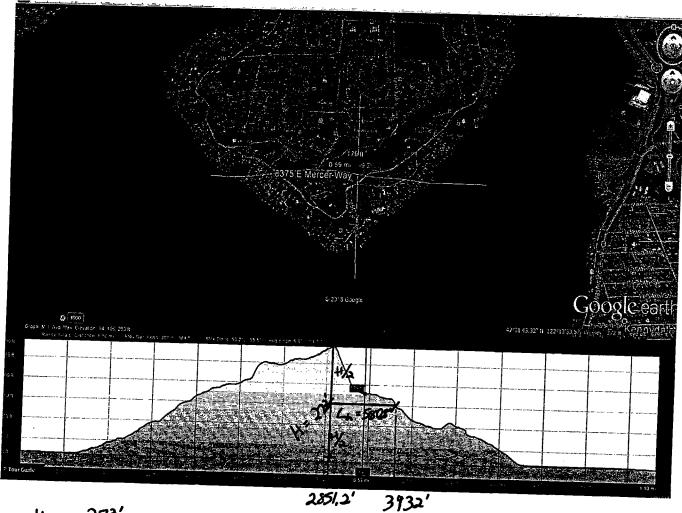
S _s = 1.461	F _a = 1.00	S _{ms} = 1.46	S _{Ds} = 0.97
S ₁ = 0.56	F _v = 1.50	S _{m1} = 0.834	S _{D1} = 0.56


Site Class =	D		_
Mean Roof Height =	32.5	ft	_
T=	0.27	sec	
R =	6.5		
l=	1.0		٦
rho =	1.0		1
Cs =	0.150		٦
W =	72.67	K	1
Allowable Base Shear V =	7.63	К	1

House

Level	Wx (K)	hx (ft)	Wxhx	Cvx	Fx (K)
Roof	24.68				
Second	23.57	20.5	483		
First	24.42	10.5			1.3
Sum	72.67		1492		7.6

East Side of Home



$$\frac{H}{L_h} = \frac{351}{991.6} = 0.35 \ge 0.2$$

$$K_1 = 0.455$$
 Figure $26.8-1$

$$K_2 = \left(1 - \frac{1 \times 1}{4 \ln n}\right) = \left(1 - \frac{8666}{1.5(994)}\right) = 0.366$$

$$K_3 = e^{-3/2/4 \ln n} = e^{-3(34.5)/991.6} = 0.90$$

$$\frac{H}{L_h} = \frac{273'}{580.8} = 0.47 > 0.2$$

$$K_{24} = (1 + K_1 K_2 K_3)^2 = (1 + 0.61637(0.837))^2 = 1.84 - K_{26}$$
 $K_1 = 0.611$
 $K_2 = (1 - \frac{264}{1.5(5021)}) = 0.697$
 $K_3 = e^{-3(34.5)/580.8} = 0.837$

therefor use Kzz=1.84

Wind Design Loads (ASCE 7-10)

Directional Procedure - Part 1

Exposure C

V= 110 mph

G= 0.85

Table 26.6-1

26.9

Roof Angle = 19.98 degrees Ground to top of roof 34.5 ft

Bottom of roof to top of roof ft

ft

K_d= 0.85 |= **|1**|

(mean roof height) h=

32.5

Pressure Coefficients from Figure 27.4-1:

	44 A
K .=	81 QA
1/21	

C _p
8.0
-0.5
0.3
-0.6

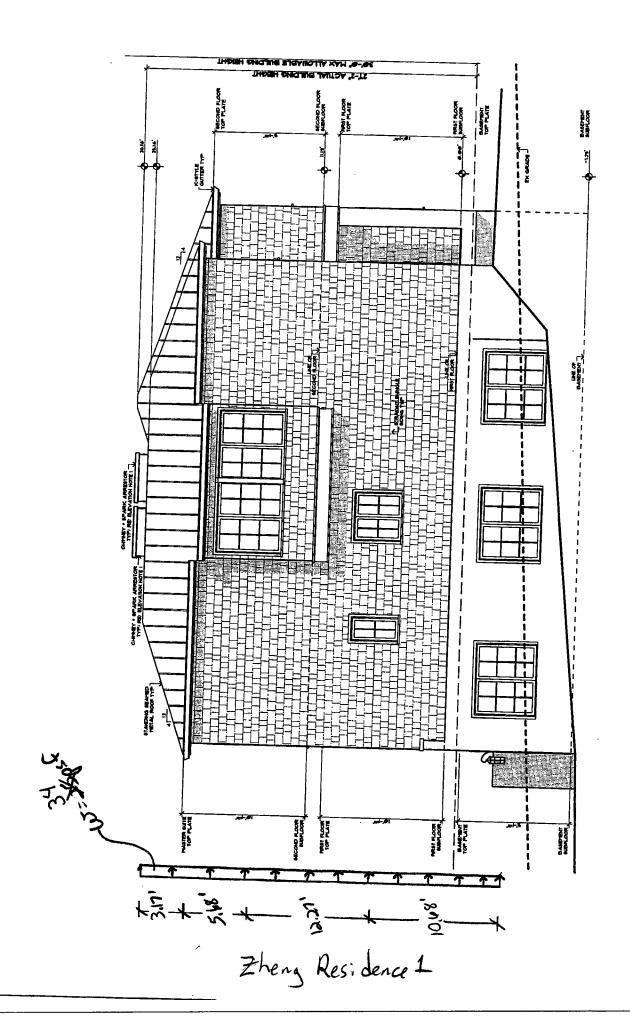
*Note= Cp values are conservative worst case values

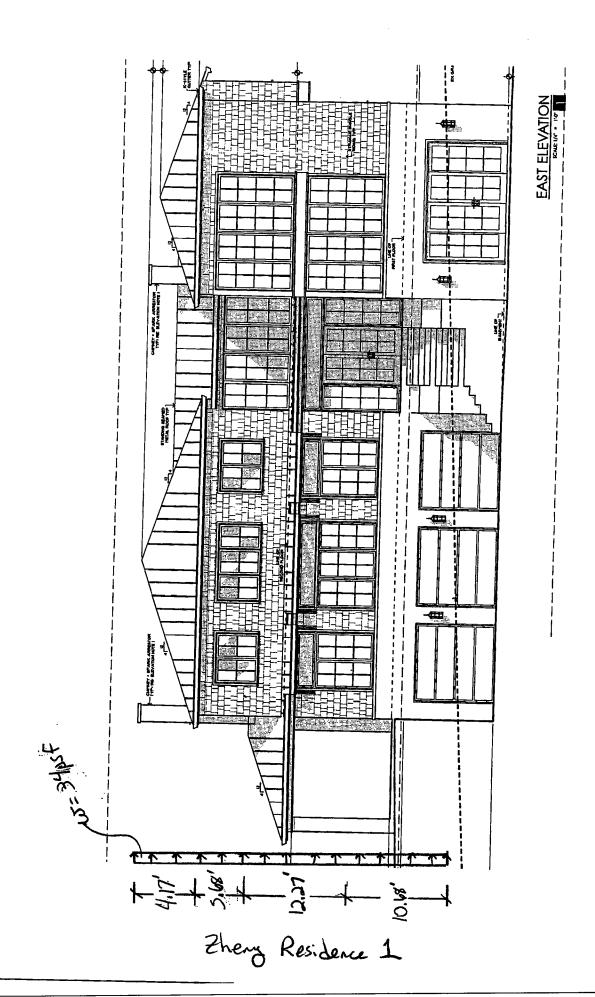
Fiessules.					Ultimate	Allowable
Ht	K _z	q_z	P _{ww walls}	P _{lwwalls}	P _{walls} (psf)	P _{walls} (psf)
0-15	0.85	41.18	28.00	21.41	49.42	29.65
15-20	0.9	43.60	29.65	21.41	51.06	30.64
20-25	0.94	45.54	30.97	21.41	52.38	31.43
25-30	0.98	47.48	32.28	21.41	53.70	32.22
30-40	1.04	50.38	34.26	21.41	55.67	33.40

P _{ww roof}	P _{lw roof}	P _{roof} (psf)	P _{roof} (psf)	
12.85	25.70	38.54	23.13	

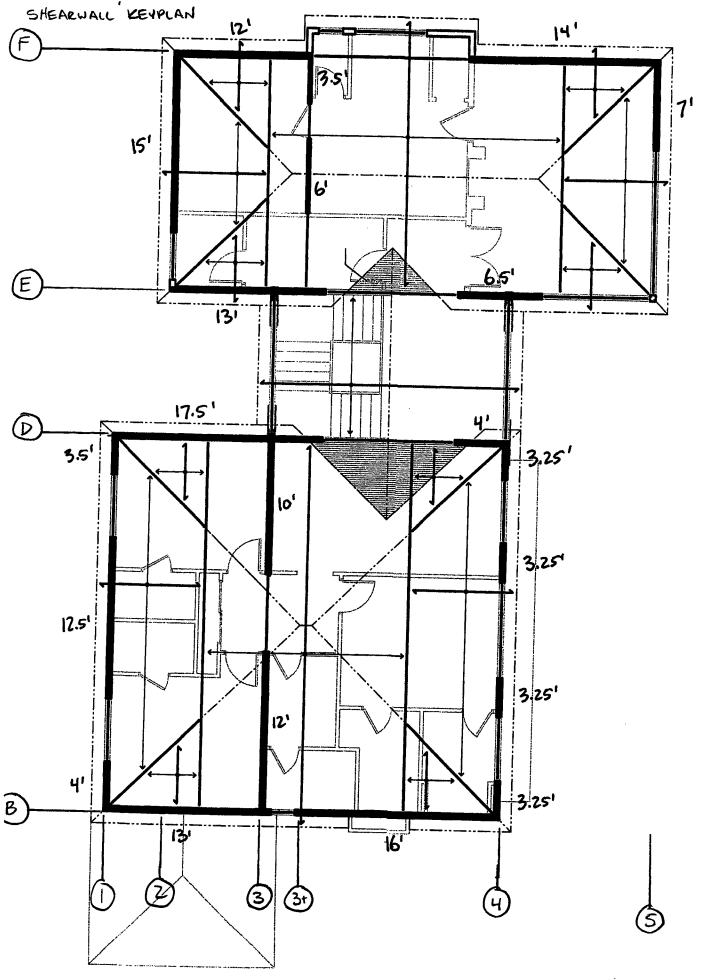
Use 34 psf on projected wind surfaces

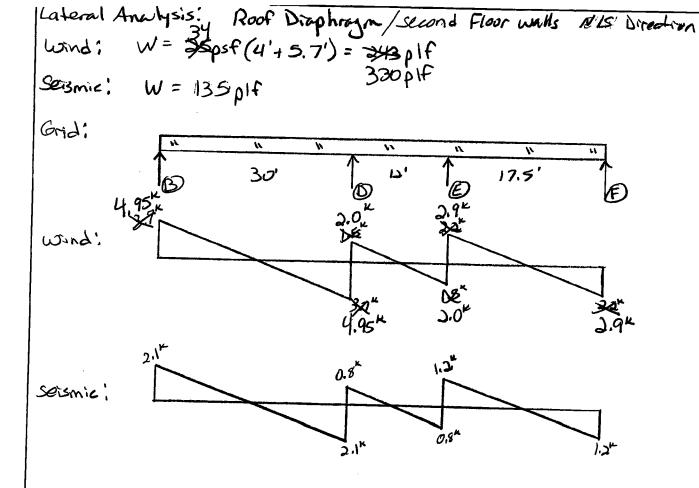
Project:


Zheng Residence 1


Date:

10/4/2017

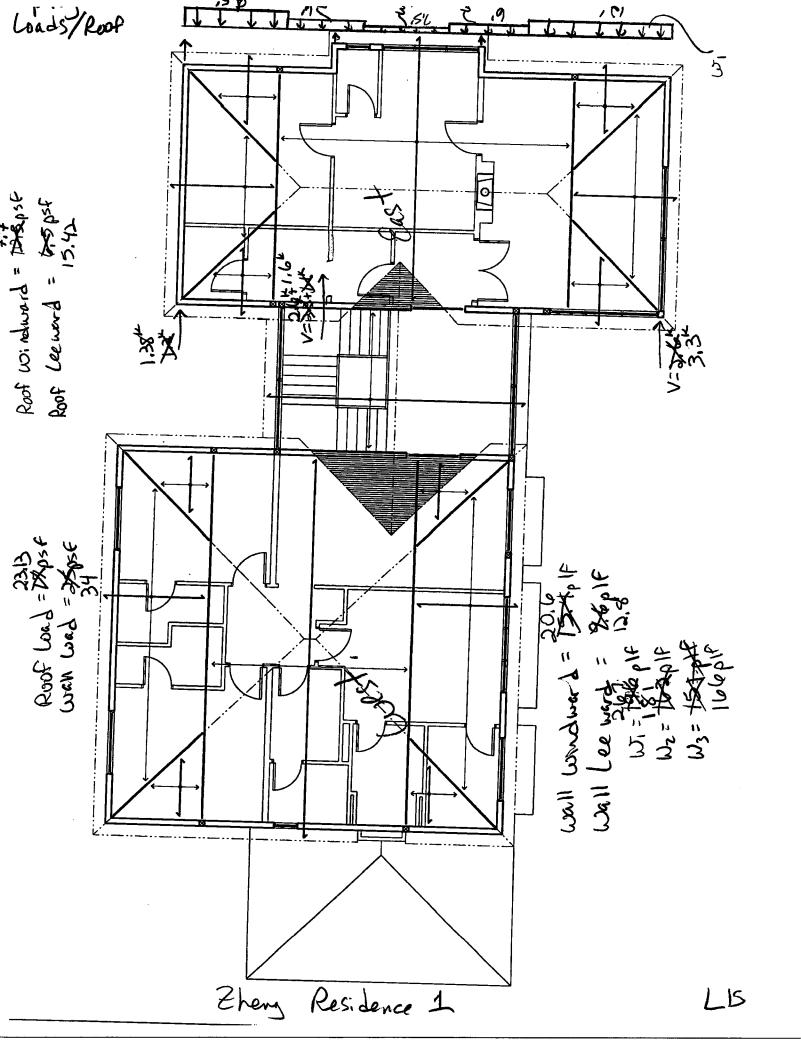

Design:

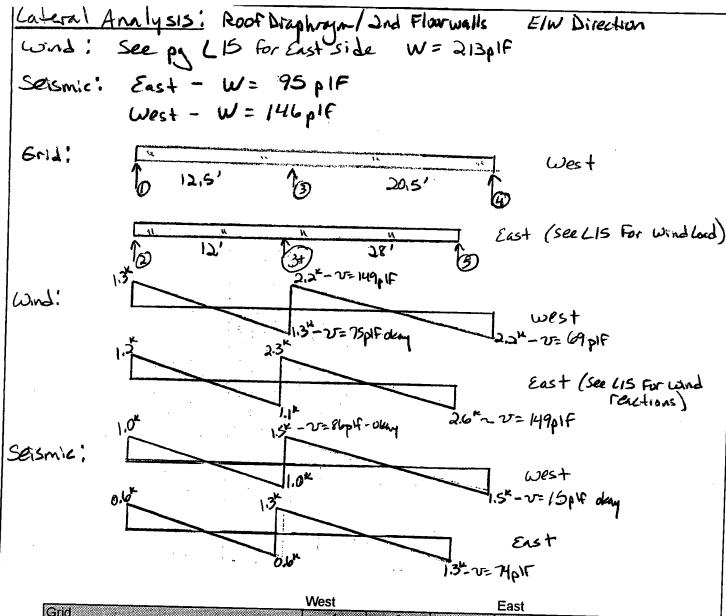

CRB

Lla

Grid	В	В	E	I -
Vwind (kips)	4/95	6.95	*************************	F
Vseismic (kips)		20		
ength of wall (ft)	20		2,0	1.2
/_wind (p/f)	171		195	
/_siesmic (p/l)**	72	323	251	112
n (ft)		152	103	46
OTF_Wind (lbs)*		9	10	10
OTF_Seismic (lbs)*	1536	2909	2513	1115
ength of shortest wall pier (ft)	652	1214	1026	462
Post Patio Poduction (π)	13	4	6,5	12
Apect Ratio Reduction for Seismic Loads	0.69	2.25	1.54	0.83
Siesmic Penalty	1.0	0.89	1.0	1.0
hearwall	VV6	W6	W6	W6
loldown	CS16	MSTC66	MSTC66	CS16

^{*}OTF does not take into account dead load and weight of the wall uno




- Zheng	Residence	
Project		

Project #

114

^{**}v_siesmic includes penalty

Grid	vvest			East		
	1	3	4	2	3+	5
Vwind (kips)	1.5	4.3	1 28	1.4	4.2	
Vseismic (kips)	1.0	2.5	1.5	กล	2.0	9.2
Length of wall (ft)	19.5	22	[6]		11.7	1,0
v_wind (p/f)	77	195	215			6
v_siesmic (p/l)**	66	114		93	442	471
n (ft)	9		160	40	286	186
OTF_Wind (lbs)*		A. C. CANNAND MANAGEMENT AND ASSESSMENT ASSESSMENT AND ASSESSMENT AND ASSESSMENT ASSESSM	**************	10		10
OTF_Seismic (lbs)*	692	1759	1938	933	4421	4714
ength of shortest wall pier (ft)	462	1023	1038	400	2000	1857
rest Detic De / Histories Wall pier (π)	3.5	10	3.25	15	3,5	7
Apect Ratio Reduction for Seismic Loads	2.57	0.90	2.77	0.67	2.86	1.43
Siesmic Penalty	0.78	1.0	0.72	1.0	0.70	
Shearwall	W6	W6	W6	W6		1.0
Holdown	CS16	MSTC66			W4	W4
	1 0010	I MOTCOO	MSTC66	CS16	MSTC66	MSTC66

^{*}OTF does not take into account dead load and weight of the wall uno

**v_siesmic includes penalty

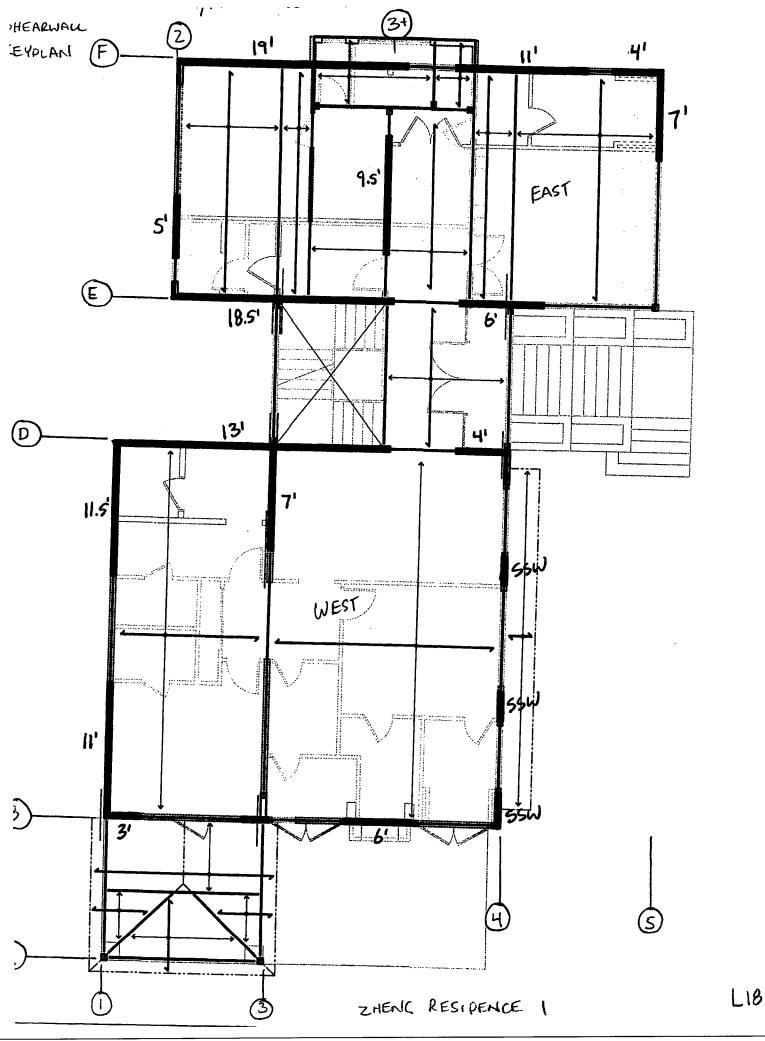
Zheng Residence

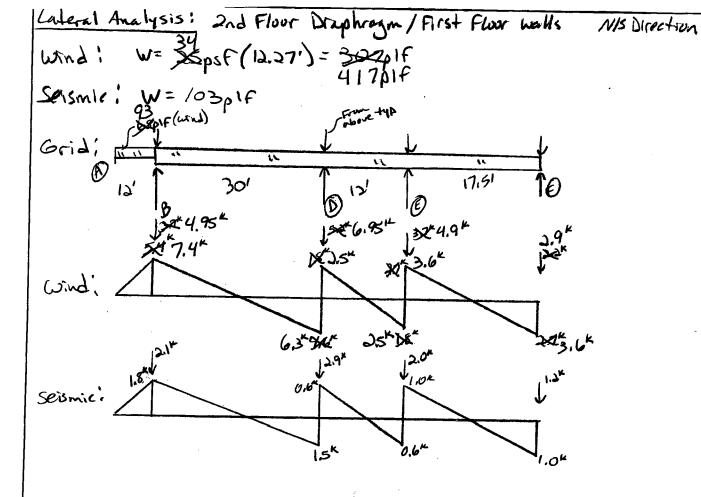
Project # CRA Designer

L16

Date

Sheet


Roof lateral analysis (cont) Diaphraym Forces: 401 N= 744plf (wind) 2 = 24p1f (seismic) 74p1f Diaphragm Capacity (unblocked) V= 252plf (wind) } unblocked 25= 190 alf (seismic) } Diaphrayam okay for Loads Load @ Top plate 7'(25) pIF)= 1869 # @ Shearwall Load@ plate = 836# = 1000# (Top chord olary for Loads)

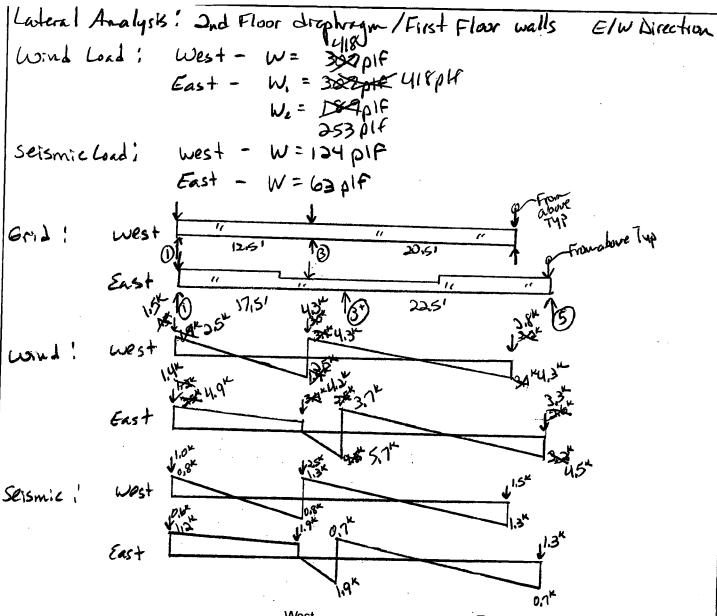

buker ENGINEERING Zheng Residence 1

Project #
Designer

417

Date

Grid	В	D	l E	F
Vwind (kips)	12.35	15.75	11	6.5
Vseismic (kips)		5.0	3.6	2.0
Length of wall (ft)	9	The state of the s	24.5	34
v_wind (p/f)	1372	504	449	191
v_siesmic (p/l)**	722	200	147	81
h (ft)	10		10	(e)
OTF_Wind (lbs)*	13722	5040	4490	1912
OTF_Seismic (lbs)*	4333	1600	1469	647
Length of shortest wall pier (ft)	3	4	6	4
Apect Ratio Reduction for Seismic Loads	3.33	2.50	1.67	2.50
Siesmic Penalty	0.60	0.80	1.0	0.80
Shearwall	2W2	W4	W4	W6
Holdown	HD12	HDU11	HDU8	HDU4
		9 CMCT40	O OMOTAG	


& CMST12 & CMST12

Zhena Residence 1

^{*}OTF does not take into account dead load and weight of the wall uno

^{**}v_siesmic includes penalty

Grid	West			East		
	1	3	4	2	3+	5
Vwind (kips)	4	111	7.1	6.3	0.4	7.8
Vseismic (kips)	18	3.8	2.8	1.8	2.6	
Length of wall (ft)	22.5	7			9,5	2 ₁ U
v_wind (p/f)	178	1586	SSW	1260		
v_siesmic (p/l)**	80	543	SSW		989	1114
h (ft)				360	274	286
OTF_Wind (lbs)*	1778			10		10
OTF_Seismic (lbs)*	+	15857	SSW	12600	9895	11143
ength of shortest wall pier (ft)	800	5429	SSW	3600	2737	2857
Appet Patio Poduction for O-is-		7	SSW	5	9.5	7
Apect Ratio Reduction for Seismic Loads	0.91	1.43	SSW	2.00	1.05	1.43
Siesmic Penalty	1.0	1.0	SSW	1.0	1.0	1.0
Shearwall	W6	2W2	SSW	2W3	2W3	2W3
Holdown	HDU2	HD19	SSWAB	HDU14		
			CONVD	<u> 10014</u>	(2)CMST12	HD19

^{*}OTF does not take into account dead load and weight of the wall uno

**v_siesmic includes penalty

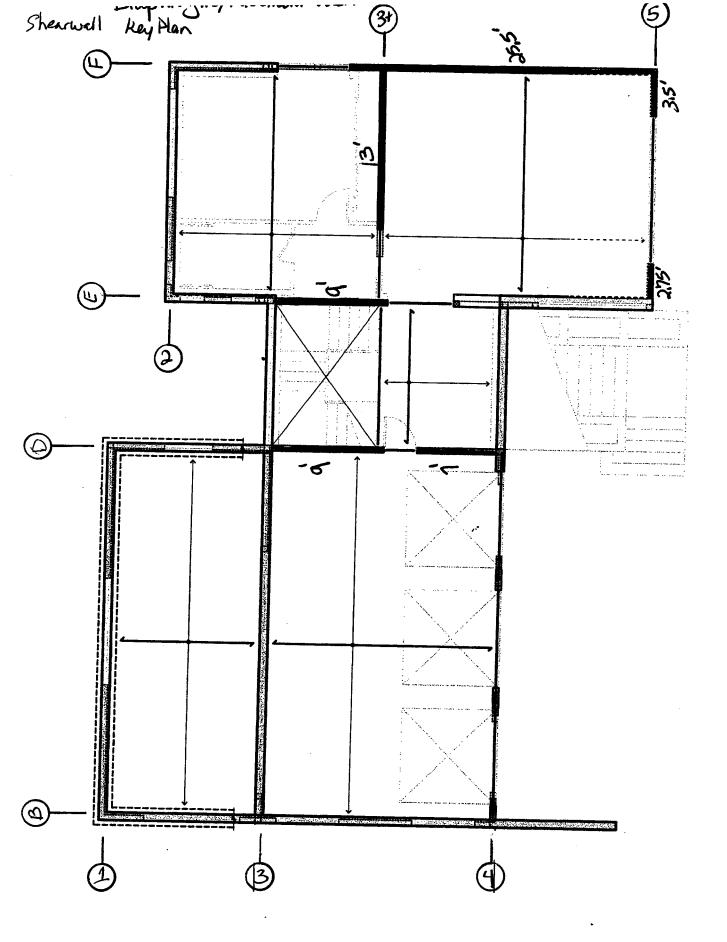
Then Residence 1

L20

Date

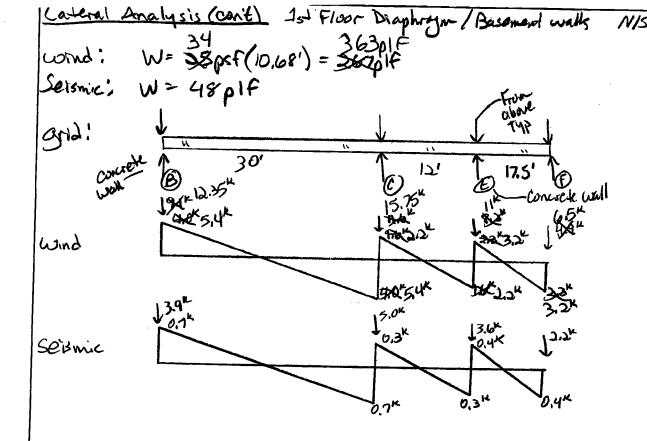
Sheet

Analysis (cont) Draphray Floor 6.0k 49 40' 250 Mer 7.5 use 38×14LSL for Topchard Black 2' of Blocking Brock& of Traphraya rotd


buker ENGINEERING LE Then Residence 1

Project # Designer

(21

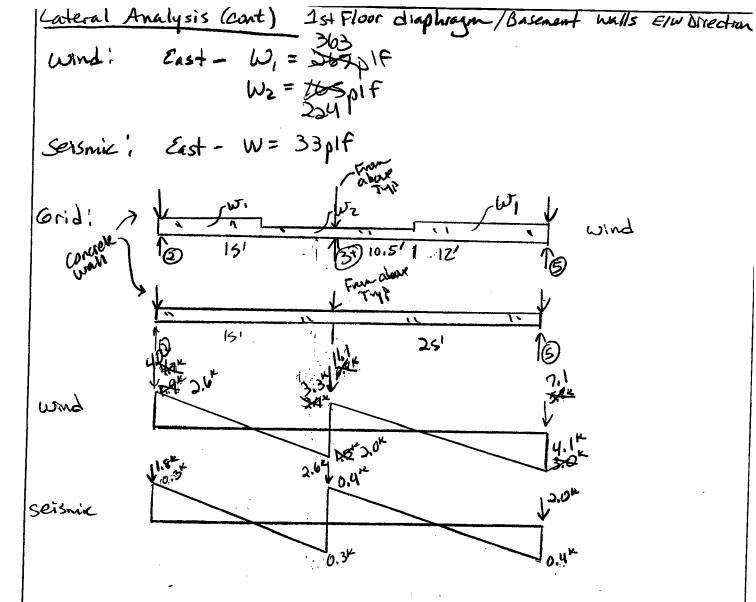

Date

Sheet

B—

Zheny Residence 1

Grid	6	D	F	F
Vwind (kips)	17.75	*************************	16.4	F
Vseismic (kips)			4.3	
Length of wall (ft)	€one(e)(e.Wa)	2.0		2.16
v_wind (p/f)	Concrete Wall		***************************************	
v_siesmic (p/l)**			Concrete Wall	
h (ft)	Concrete Wall		Concrete Wall	102
OTF_Wind (lbs)*			10	10
OTF_Seismic (lbs)*	Concrete Wall		Concrete Wall	3804
Longth of about 11 1 10	Concrete Wall	3750	Concrete Wall	1020
Length of shortest wall pier (ft)	Concrete Wall	7	Concrete Wall	
Apect Ratio Reduction for Seismic Loads	Concrete Wall	1.43	Concrete Wall	0.43
Siesmic Penalty	Concrete Wall	1.0	Concrete Wall	
Shearwall	Concrete Wall	2W2		1.0
Holdown	Concrete Wall	HD19	Concrete Wal	W4
	Concrete vvali	<u>⊓019</u>	Concrete Wall	HDU8


^{*}OTF does not take into account dead load and weight of the wall uno **v_siesmic includes penalty

buker ENGINEERING Zheng Rosidence 1

Project # Designer

Sheet

Date

	East		
Grid	2	3+	5
Vwind (kips)		16.4	11.2
Vseismic (kips)		12.5	
Length of wall (ft)	Concrete Wall	13	2.4 6.75
v_wind (p/f)	Concrete Wall	1262	1659
v_siesmic (p/l)**	Concrete Wall	962	646
h (ft)		10	
OTF_Wind (lbs)*	Concrete Wall	12615	16593
OTF_Seismic (lbs)*	Concrete Wall	9615	
Length of shortest wall pier (ft)	EPANESSESSESSESSESSESSESSESSESSESSES	13	3556 275
Apect Ratio Reduction for Seismic Loads	Concrete Wall	0.77	3.00
Siesmic Penalty	Concrete Wall	1.0	0.55
Shearwall	Concrete Wall	2W3	
Holdown	Concrete Wall		2W2
	Louiciete Mail	HDU14	(2) HDU14

^{*}OTF does not take into account dead load and weight of the wall uno **v_siesmic includes penalty

Zheng Residence 1

Project # Designer

te

Sheet

Date

Lateral analysis (cont) BIS Spandrel Beam compacladding Lond 9= 0,00256 Kz Kze Ka V2 V= 110mph Kze = 1.84 (see pg L9) Kd = 0.85 (Table 26.6-1) 92=0.002560.72×1.84×(0.85×110)=35,5F Ery 54x14 PSC Kz= 2.01 (2/Zz) 20-0.72 Load on Beam Z= 33.45 W= 35psf(12.271) = 430plf = 7.0 } Table 26.9-1 1=12.5' M= 8.4 H , R = R2 = 2.7 K fb= 1568psi = Fb=2,900psi fr= 55psi & F'v = 290psi Du = 0.636"=1/235 Okay use 5/4x14psl for spandrel Beam

buker ENGINEERING Zheng Residence 1

Project # CRA Designer

F 9P

Date

Sheet

Project: B28

Daniel Buker, BUKER ENGINEERING, LLC July 17, 2017. H:\Projects\2017\East Mercer Residence - Parcel 1\Calculations\

Member Uniform Loads

Load Case	Member	Direction	Offset	End Offset	Force	Moment
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i digitarin in t		美国的国际企业的基础	ft	K/ft	ft-K/ft
D	BmX002	Force Y	0.000	21.500	-0.015	-NA-
<u>L</u>	BmX002	Force Y	0.000	21.500	-0.040	-NA-

Member Elements

Mem	Section	Material	(1)No	(2)No	Lengt	D-	° D-7	One 14/6	/ Frami
ber		사가 하는 퇴근하는 학생들에 가는 경기를 가지 않아 내가 하셨다. 100 기회가 회장하는 사람이 있다면 되었다. 그 사람이 없는 사람이 되었다. 그	- de	de	, Lenge h	1	7 2	One way	rramı
					f	1			ng
BmX0	PSL-B	Parallam PSL 2.0E (Beam) NDS Structural	N001	N002	21.50	Rig	Ria	Normal	Beam
02	5.25x14	Composite Lumber			_	id	id	(2-way)	

Load Cases

Load Case	Design Checks	Seismic Type	Results
(1)D	NA	-NA-	Yes (2 sets)
(3)E+X	-NA-	-NA-	Yes
(6)E-X	NA-	-NA-	Yes
(12)L	-NA-	-NA-	Yes (2 sets)
(22)W+X	-NA-	-NA-	Yes
(25)W-X	-NA-	-NA-	Yes
(34)0.75(D+L+W) »+X	Defl. 'Other'	-NA-	Yes (2 sets)
(35)0.75(D+L+W) »-X	Defl. 'Other'	-NA-	Yes (2 sets)
(36)16-10Lr	Allowable (ASD)	-NA-	Yes (2 sets)
(37)16-11Lr	Allowable (ASD)	-NA-	Yes (2 sets)
(38)16-12E »+X+30%+Z	Allowable (ASD)	Redundancy	Yes (2 sets)
(39)16-12E »+X+30%+Z:OS	Allowable (ASD)	Overstrength	Yes (2 sets)
(40)16-12E »-X+30%+Z	Allowable (ASD)	Redundancy	Yes (2 sets)
(41)16-12E »-X+30%+Z:OS	Allowable (ASD)	Overstrength	Yes (2 sets)
(42)16-12W »+X	Allowable (ASD)	-NA-	Yes (2 sets)
(43)16-12W »-X	Allowable (ASD)	-NA-	Yes (2 sets)
(44)16-13Lr »+X	Allowable (ASD)	-NA-	Yes (2 sets)
(45)16-13Lr »-X	Allowable (ASD)	-NA-	Yes (2 sets)
(46)16-14 »+X+30%+Z	Allowable (ASD)	Redundancy	Yes (2 sets)
(47)16-14 »+X+30%+Z:OS	Allowable (ASD)	Overstrength	
(48)16-14 »-X+30%+Z	Allowable (ASD)	Redundancy	Yes (2 sets)
(49)16-14 »-X+30%+Z:OS	Allowable (ASD)	Overstrength	Yes (2 sets)
(50)16-15 »+X	Allowable (ASD)	-NA-	Yes (2 sets)
(51)16-15 »-X	Allowable (ASD)	-NA-	Yes (2 sets)
(52)16-15Di	Allowable (ASD)	-NA-	Yes (2 sets)
53)16-16 »+X+30%+Z	Allowable (ASD)	Redundancy	Yes (2 sets)
54)16-16 »+X+30%+Z:OS	Allowable (ASD)	Overstrength	Yes (2 sets)
55)16-16 »-X+30%+Z	Allowable (ASD)	Redundancy	Yes (2 sets)
56)16-16 »-X+30%+Z:OS	Allowable (ASD)	Overstrength	Yes (2 sets)
57)16-9	Allowable (ASD)	-NA-	Yes (2 sets)
58)D+L	Defl. 'D + L'	-NA-	Yes (2 sets)
59)D+Lr+R	Defl. 'Other'		Yes (2 sets)
60)Live	Defl. 'L only'	-NA- -NA-	Yes (2 sets)
61)Seismic »+X	Defi. Comy	-NA- -NA-	Yes (2 sets)
62)Seismic »-X	Defl. 'Other'		Yes (2 sets)
63)Wind »+X	Defl. 'W or S'	-NA-	Yes (2 sets)
64)Wind »-X	Defl. 'W or S'	-NA-	Yes (2 sets)
	Dell. AA OL 2	-NA-	Yes (2 sets)

Equation Load Combinations

Load Case	Cases Equation
0.75(D+L+W) »+X	3 0.75D + 0.75L + 0.75W+X
0.75(D+L+W) »-X	3 0.75D + 0.75L + 0.75W-X

Project: B28
Daniel Buker, BUKER ENGINEERING, LLC July 17, 2017

16-9	Parcel 1\Calculations\ 2 D+L
16-10Lr	1 D
16-11Lr	2 D+0.75L
16-12E »+X+30%+Z	2 1.14D + 0.70E+X
16-12E »+X+30%+Z:OS	2 1.14D + 2.10E+X
16-12E »-X+30%+Z	2 1.14D + 0.70E-X
16-12E »-X+30%+Z:OS	2 1.14D + 2.10E-X
16-12W »+X	2 D + 0.60W+X
16-12W »-X	2 D + 0.60W-X
16-13Lr »+X	3 D + 0.75L + 0.45W+X
16-13Lr »-X	3 D + 0.75L + 0.45W-X
16-14 »+X+30%+Z	3 1.10D + 0.75L + 0.53E+X
16-14 »+X+30%+Z:OS	3 1.10D + 0.75L + 1.58E+X
16-14 »-X+30%+Z	3 1.10D + 0.75L + 0.53E-X
16-14 »-X+30%+Z:OS	3 1.10D + 0.75L + 1.58E-X
16-15 »+X	2 0.60D + 0.60W+X
16-15 »-X	2 0.60D + 0.60W-X
16-15Di	1 0.60D
6-16 »+X+30%+Z	2 0.46D + 0.70E+X
6-16 x+Y+30%+7:00	2 0.702 0.7027

2 0.46D + 2.10E+X

2 0.46D + 0.70E-X

2 0.46D + 2.10E-X

2 D+L

1 D

1 E+X

1 E-X

1 W+X

1 W-X

1 L

Member Extreme Results

16-16 »+X+30%+Z:OS

16-16 »-X+30%+Z:OS

16-16 »-X+30%+Z

D+L

Live

D+Lr+R

Seismic »+X

Seismic »-X

Wind »+X

Wind »-X

Member	Fx (ic)	Vy (kc)	Mz (lc)	fbz(-y) (lc)	fbz(+y) (lc)
	K	K	K-ft	Ksi	
BmX002 BmX002	0.00 (1)	-6.12 (47)	-19.07 (22)	-1.335 (22)	-1.532 (41)
DIIIAUUZ	0.00 (1)	3.63 (41)	21.90 (41)	1.532 (41)	1.335 (22)

(lc) = Load Case index, shown in 'Load Cases' table.

Nodal Extreme Reactions

Node	FX FX	FY	FZ		111111111111111111111111111111111111111	
。	K	Maria Mariana Karaba	K	MX X	MY	MZ
N001	0.000 (1)	-3.064 (22)	0.000 (1)	K-ft		K-ft
N001	0.000 (1)	3.625 (41)	0.000 (1)	0.000 (1)	-NA-	-NA-
N003	-NA-	-3.064 (25)	0.000 (1)	0.000 (1)	-NA- -NA-	-NA- -NA-
N003	-NA-	6.703 (47)	0.000 (1)	0.000 (1)	-NA-	-NA-

Nodal Supports

Node	Fix DX	Fix DY	Fix DZ	Fix RX	Fix RY	Fix RZ
N001	Yes	Yes	Yes	Yes	No	No No
N003	No	Yes	Yes	Yes	No	No

Project: Front Beam @ Garage
Daniel Buker, BUKER ENGINEERING, LLC
H:\Projects\2017\East Mercer Residence - Parcel 1\Calculations\

Member Uniform Loads

Load Case			Offset	End Offset	Force	Moment
	在中华各级的原理		4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	the state of the s	K/ft	ft-K/ft
D	BmX003	Force Y	0.000	10.250	-0.353	-NA-
D	BmX003	Force Y	10.250	20.250	-0.353	-NA-
D	BmX003	Force Y	20.250	29.500	-0.353	-NA-
L	BmX003	Force Y	0.000	10.250	-0.780	-NA-
<u></u>	BmX003	Force Y	10.250	20.250	-0.780	-NA-
L	BmX003	Force Y	20.250	29.500	-0.780	-NA-
S	BmX003	Force Y	0.000	10.250	-0.100	-NA-
<u>s</u>	BmX003	Force Y	10.250	20.250	-0.100	-NA-
<u>s</u>	BmX003	Force Y	20.250	29.500	-0.100	-NA-

Member Elements

Member	Section	Material	(1)Node	(2)Node	e Length Rz1 Rz2 One Way Framing
BmX003	W12x45	ASTM A992 Grad	e 50 N001	N002	29.500 Rigid Rigid Normal (2-way) Beam

Load Cases

Load Case		Seismic Type	Results
(1)D	NA	-NA-	Yes (2 sets)
(3)E+X	-NA-	-NA-	Yes (2 sets)
(6)E-X	-NA-	-NA-	Yes (2 sets)
(12)L	-NA-	-NA-	Yes (2 sets)
(20)S	-NA-	-NA-	Yes (2 sets)
(22)W+X	-NA-	-NA-	Yes (2 sets)
(25)W-X	-NA-	-NA-	Yes (2 sets)
(34)0.75(D+L+W) »+X	Defl. 'Other'	-NA-	Yes (2 sets)
(35)0.75(D+L+W) »-X	Defl. 'Other'	-NA-	Yes (2 sets)
(36)16-10Lr	Allowable (ASD)	-NA-	Yes (2 sets)
(37)16-10S	Allowable (ASD)	-NA-	Yes (2 sets)
38)16-11Lr	Allowable (ASD)	-NA-	Yes (2 sets)
39)16-11S	Allowable (ASD)	-NA-	Yes (2 sets)
40)16-12E »+X+30%+Z	Allowable (ASD)	Redundancy	Yes (2 sets)
41)16-12E »+X+30%+Z:OS	Allowable (ASD)	Overstrength	Yes (2 sets)
42)16-12E »-X+30%+Z	Allowable (ASD)	Redundancy	Yes (2 sets)
43)16-12E »-X+30%+Z:OS	Allowable (ASD)	Overstrength	Yes (2 sets)
44)16-12W »+X	Allowable (ASD)	-NA-	Yes (2 sets)
45)16-12W »-X	Allowable (ASD)	-NA-	Yes (2 sets)
46)16-13Lr »+X	Allowable (ASD)	-NA-	Yes (2 sets)
47)16-13Lr »-X	Allowable (ASD)	-NA-	Yes (2 sets)
48)16-13S »+X	Allowable (ASD)	-NA-	Yes (2 sets)
49)16-13S »-X	Allowable (ASD)	-NA-	Yes (2 sets)
50)16-14 »+X+30%+Z	Allowable (ASD)	Redundancy	Yes (2 sets)
51)16-14 »+X+30%+Z:OS	Allowable (ASD)	Overstrength	Yes (2 sets)
52)16-14 »-X+30%+Z	Allowable (ASD)	Redundancy	
53)16-14 »-X+30%+Z:OS	Allowable (ASD)	Overstrength	Yes (2 sets) Yes (2 sets)
54)16-15 »+X	Allowable (ASD)	-NA-	
55)16-15 »-X	Allowable (ASD)	-NA-	Yes (2 sets) Yes (2 sets)
56)16-15Di	Allowable (ASD)	-NA-	Yes (2 sets)
57)16-16 »+X+30%+Z	Allowable (ASD)	Redundancy	
58)16-16 »+X+30%+Z:OS	Allowable (ASD)	Overstrength	Yes (2 sets)
9)16-16 »-X+30%+Z	Allowable (ASD)	Redundancy	Yes (2 sets)
60)16-16 »-X+30%+Z:OS	Allowable (ASD)	Overstrength	Yes (2 sets)
31)16-9	Allowable (ASD)	-NA-	Yes (2 sets)
52)D+L	Defl. 'D + L'	-NA-	Yes (2 sets)
33)D+Lr+R	Defl. 'Other'	-NA-	Yes (2 sets)
	24 41.41	-14/-	Yes (2 sets)

Page 1 VisualAnalysis 12.00.0001 (www.lesweb.com)

Project: Front Beam @ Garage
Daniel Buker, BUKER ENGINEERING, LLC July 20, 2017

H:\Projects\20				

(04)0+3	Defl. 'Other'	-NA-	Yes (2 sets)
(65)Live	Defi. 'L only'	-NA-	Yes (2 sets)
(66)Seismic »+X	Defl. 'Other'	-NA-	Yes (2 sets)
(67)Seismic »-X	Defl. 'Other'	-NA-	Yes (2 sets)
(68)Snow	Defl. 'W or S'	-NA-	Yes (2 sets)
(69)Wind »+X	Defl. 'W or S'	-NA-	Yes (2 sets)
(70)Wind »-X	Defl. 'W or S'	-NA-	Yes (2 sets)

Equation Load Combinations

Load Case	Cases Equation
0.75(D+L+W) »+X	3 0.75D + 0.75L + 0.75W+X
0.75(D+L+W) »-X	3 0.75D + 0.75L + 0.75W-X
16-9	2 D+L
16-10Lr	1 D
16-10S	2 D+S
16-11Lr	2 D + 0.75L
16-11S	3 D + 0.75L + 0.75S
16-12E »+X+30%+Z	2 1.14D + 0.70E+X
16-12E »+X+30%+Z:OS	2 1.14D + 0.70E+X 2 1.14D + 2.10E+X
16-12E »-X+30%+Z	2 1.14D + 0.70E-X
16-12E »-X+30%+Z:OS	2 1.14D + 0.70E-X 2 1.14D + 2.10E-X
16-12W »+X	2 1.14D + 2.10E-X 2 D + 0.60W+X
16-12W »-X	2 D + 0.60W-X
16-13Lr »+X	3 D + 0.75L + 0.45W+X
16-13Lr »-X	3 D + 0.75L + 0.45W-X
16-13S »+X	4 D + 0.75L + 0.45W+X
16-13S »-X	4 D + 0.75L + 0.75S + 0.45W-X
16-14 »+X+30%+Z	4 1.10D + 0.75L + 0.75S + 0.53E+X
16-14 »+X+30%+Z:OS	4 1.10D + 0.75L + 0.75S + 1.58E+X
16-14 »-X+30%+Z	4 1.10D + 0.75L + 0.75S + 0.53E-X
16-14 »-X+30%+Z:OS	4 1.10D + 0.75L + 0.75S + 1.58E-X
16-15 »+X	2 0.60D + 0.60W+X
16-15 »-X	2 0.60D + 0.60W-X
16-15Di	1 0.60D
16-16 »+X+30%+Z	2 0.46D + 0.70E+X
16-16 »+X+30%+Z:OS	2 0.46D + 2.10E+X
16-16 »-X+30%+Z	2 0.46D + 0.70E-X
16-16 »-X+30%+Z:OS	2 0.46D + 2.10E-X
D+L	2 D+L
O+Lr+R	1 D
)+\$	2 D+S
ive	1 L
Seismic »+X	1 E+X
Seismic »-X	1 E-X
Snow	1 \$
Vind »+X	1 W+X
Vind »-X	

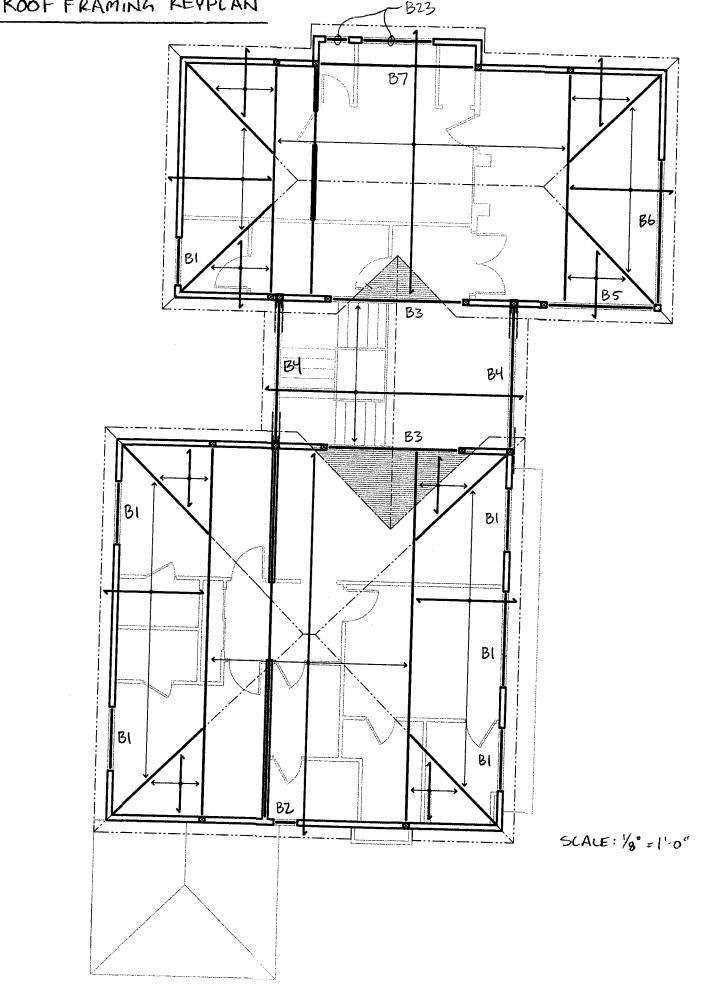
Member Extreme Results

Member	Fx (lc)	100 Marian 100 Marian	E A MARIE CONTRACTOR AND A SERVICE CONTRACTOR		
8 873 56 2835 V S 8	FX (IC)	Vy (lc)	MZ (IC)	fbz(-y) (lc)	fbz(+v) (lc)
		K	K-ft	Ksi	Ksi
BmX003	0.00 (1)	-18.06 (43)	-18.05 (60)		
BmX003	0.00 (1)	19.91 (41)		-3.754 (60)	<u>-4.569 (41)</u>
	0.00 (1)	18.81 (41)	21.97 (41)	4.569 (41)	3.754 (60)

⁽Ic) = Load Case index, shown in 'Load Cases' table.

Nodal Extreme Reactions

Node FX FZ MX MY MZ	7
K K-ft K-ft K-ft K-ft K-ft K-ft K-ft K-f	4
K-III	ij


Shearwall	DF(PIF)	TOPP	TOP Plate (PLF) Base Plate										
Type	wind	seis	121 OH	DX OF LSL	AT WOOD (PLF)	ATCONC. (PLF)								
W6	365	260	242	298	242	518" PARG 48" be								
W4	532	380	(2) Rous 160	A35@ 16"0C	(2) Rows 16d @ 6" de U 84	5/8' PARQ 32'0C								
W3	685	490	(2) Raws 162@ 6"0C 484	A35@ 12'0C 595	(2) Rous 16d	518 "BABO 16"OC								
W2	895	640	(2) ROWS. 160@UNOC	A35@9"06 793	(2) ROWS 16d @41/210C	1488								
2w3	1370	980	N/A	A35@6"0C	(2) Rows 16d (2) 9 68	518" PAB @16"OL								
2w2	1790	1280	NIA	HGA 10TK @ 8" OC 1747	(2) Rows 16d @ 210c 1452	518" \$AB @ 12"00								

East Mercer Parcel 1

Date

Sheet

		 			_		Hem-Fir No. 2								
	b (in)	d (in)	Sx (in ³)	ix (in⁴)		M(#-ft)	Cd=1.0	Cd=1.15	Cd=1.6						
2x4	1.5	3.5	3.06	5.36]	(2)2x4	651	748	1,041						
2x6	1.5	5.5	7.56	20/80		(2)2x6	1,393	1,602	2,228						
2x8	1.5	7.25	13.14	47.63		(2)2x8	2,234	2,569	3,574						
2x10	1.5	9.25	21.39	98.93		(2)2x10	3,333	3,833	5,333						
2x12	1.5	11.25	31.64	177.98		(2)2x12	4,482	5,155	7,172						
2x14	1.5	13,25	43.89	290.78		(2)2x14	5,596	6,435	8,954						
								DF-L No. 2							
3x4	2.5	3.5	5.10	8.93		3x4	574	660	919						
3x6	2.5	5.5	12.60	34.66		3x6	1,229	1,413	1,966						
3x8	2.5	7.25	21.90	79.39		3x8	1,971	2,267	3,154						
3x10	2.5	9,25	35:65	164.89		3x10	2,941	3,382	4,706						
3x12	2.5	11.25	52.73	296.63	tistorierum	3x12	3,955	4,548	6,328						
3x1/4	2.5	13.25	73.15	484,63		3x14	4,938	5,678	7,900						
4x4	3.5	2 -						DF-L No. 2							
4x6.	3.5	3.5	7.15	12.51	94579.HE2	4x4	804	924	1,286						
4x8	3.5	15.5	17:65	.48.53		4x6	1,720	1,979	2,753						
4x10	3.5	7.25 9.25	30.66	111.15	Adrense	4x8	2,989	3,438	4,783						
4x12	3.5	11.25	49:91	230,84		4x10	4,492	5,166	7,187						
4x14	3.5	13.25	73.83 102.41	415.28	96.000	4x12	6,091	7,004	9,745						
			102.41	678.48	30 C	4x14	7,681	8,833	12,289						
6x6	5.5	5.5	27.73	76.26				DF-L No. 1							
6x8	5.5	7.5	51.56	198.36		6x6	3,120	3,587	4,991						
6x10	5.5	9.5	82.73	392.96		6x8	5,801	6,671	9,281						
6x12	5.5	11.5	121.23	697.07		6x10 6x12	9,307	10,703	14,891						
6x14	5.5	13.5	167.06	1127.67		6x14	13,638	15,684	21,821						
-6x16	5.5	15:5	220.23	1706.78		6x16	18,550	21,333	29,680						
THE RESERVE OF THE PARTY OF THE				1/000/0		0.100	24,081	27,698	38,530						

	llowable l
	e Design
	Properties
	s ⁽¹⁾ (100%
	⁽¹⁾ (100% Load Duration)
•	_

(1) For product in beam orientation, whese eitherwise noted																														
se noted.																													<u> </u>	
	tudau																							<u> </u>	1	╀			in in	
																												148113		
											Marie a second														i,n					
																											The Part of the Pa			
1.2	#			ľ																			po be	ij						
-	-	4							1	┨┈							I													
																۳	å					2								
1				ı,			Į			11,16				i			2	H												
34			3				ij								227 618	#			H										•	
			1				10 14	1																						

PRODUCT

Protect product from sun and water

Design Stresses⁽¹⁾ (100% Load Duration)

4	Ħ		F 1111	:								-		**********	
-		ш		8				m L			111				
=	Ħ			Ĭ	H.		Ī				-	H			
L	H						1			w					
	H	Š	ш	1				4	HU	M		ı.			
•	Н		m				ı					E.			
Ł	A		16	1	ı ii		1		H.	1					
г				ğ			1								
Ė							3								
k.							7				15 11				
E							#	A P			i i				
	H	ш								蠢	鯔				
ŀ	П		T,				i i	ш.	w i						
L	П					5	#		M	噩					
	H		₩.												
Ļ	H	4.	₩.				a a	3		霊					
•	Н		M				4		m	ﻘ				II. 6	
Ļ	H		w				4			繼	3				
	Ħ									M	i I				
					₽'''		•		m	1111111	22				
-	H										3			8	
-		4				1	B.	_	ш		1			-	
								A I		▦	l l				
	Iħ	Q.	_		-			- III	a i					* #	
	ŀč				4		1	31	M)				12		
	Œ				40			<i>7</i> 1 C	30	P				4 =	
	H					-									
3	W	ш										88		.	
			***************************************				₽-	-	Ш.	******	-			PE-III	
	M		-						H						
		ø.			۱			.	H						
1			8												
		M.	-				E.	HIR	H	فأبعث					
ı	ı	M.	_1		15	,	2	: 🏢	W	=			1		
	Z		=				1	-		=			112		
1	H		#		-				₩.						
					ŀ		•	- 84						.	
		Ш.					L		111						
1	₩	M	;					-	ш		1				
1			-		Lim		Ē		Ш						
ij	*		#		-	1	٠.	a H	# 1	b			i i	-	
ı	ŏ		**							•					
Ē	4		#		Tu		-	- 1	M:	_					
Ĭ	ä	315					-		\$1 s	Ð					
ı	H	M.	-		-		92.5	٠.		₽			- 2	4 2	
ı	w		1							- 1					
1	Ш	Щ			Ĺ	1					1			m I	
1	H	Ħ		1		***	1	Hi.	#	****				141111	
	ă.									ı	1				
			4		ihuh		i.,	. 666	Ш.,		噩				
			_	1		200					taria		w.		
		85					1		11.6	#					
ı	Ħ	117		#	4111	=	14		# =	-					
П	Ш	Hi	-	388		-	ı		9						
t				7		4897			ı	1	靀				
П	III.	ı		1000		7	L		il		-			::::#i	
									T	23311	137.5			THE	
H		1	-	į					1	1					
H	W	1							١.					:#: :	
M	1	¥.	- 1		Thomas .		·		15.	14					
		-	ш		I		714			3					
	w	19					1		-	**					
H	ж								1	į					
H									ı						
H	M	į.	335				ļ		II						
	░	•	1		i		·		₽	7				-	
	H	ı			1				\$	-		mi		-	
					- 1				ľ	1					
	×		: 1		-		MI	H	-						
	1				I		H	W							
		ı					-		1			₩.			
	Щ	=	4						1		3				
			:		- 1				1						
	ш	Ļ	÷								4				
	ш				-				ļ.	:					
H	H,				. 1					ż		to:			
L	▓	ia		Æ,					Ĭ	1	1				
i.	W			1	9 5 1		Ľ		4	ì	1				
Ľ	×			1	100		듸			ı	ŧ	Ties	- 24	.	
E	7			95	=		=		C.F	1	4	-		-	
ŽĮ.					- 3								.#		
ø	ø														
ø	W								_		#				
H	H						7		_						
ø	ø									ı	ı İ				
Ø	ø														
M	M	Secretary 10 mm		r	ا پ		4								
ď	ø			9			=		ð			-	47.		
ď		⊯		4	4111			M	-12.						
۱	ø	=								r		M			
ø	ø						1					M			
ø	ø			_					_						
ı	ø				-							M			
Ħ	Ø						Ē					HÆ			
ø	H						- 1								
	۰	=		40			اد		-						
Í	ij	gr,		4.4	-				'n			H			
۱	ø	-		1	-		Ŧ	₩,							
Ħ							#		7						
ı	ı						Ī		-				T		
#2	110	- 1						of the last	- 1			uuti.	11.00		and the same

(1) Unless atherwise raced, adjustment to the design stresses for duration of load are permitted in accordance with the applicable code.

(3) For 12" depth. For other depths, multiply f_b by the appropriate factor as follows: (2) Reference modulus of elasticity for beam and column stability calculations, per NDS®.

for TimberStrand® LSL, multiply by 12 0.092

— For Parallam® PSI, multiply by $\begin{bmatrix} 12 \\ d \end{bmatrix}$ o.111 - For Microllam® LVL, multiply by $\begin{bmatrix} 12 \\ d \end{bmatrix}$ 0.136

(4) F_t has been adjusted to reflect the volume effects for most standard applications.

(5) $F_{c\perp}$ may not be increased for duration of load.

(5) For lateral connection design only.
(7) Specific gravity of 0.58 may be used for botts installed perpendicular to face and loaded perpendicular to grain.

(8) Values are for thickness up to 31/4".

(9) For members less than 1%" thick and in plank orientation, use $F_{c\perp}$ of 670 psi. NDS® bearing area factor $C_b = 1.0$

(10) Value accounts for large hole capabilities. See Allowable Holes on page 26.

(11) Value shown is for plank orientation.

(12) For column applications, use $f_{\rm ell}$ of 500 psi. Alternatively, refer to ESR-1387, Table 1, footnote 15.

General Assumptions for Trus Joist® Beams

Beam Orientation

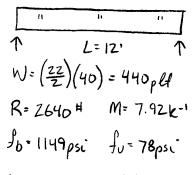
- Lateral support is required at bearing and along the span at 24" on-center,
- Bearing lengths are based on each product's bearing stress for applicable grade and
- All members 7¼" and less in depth are restricted to a maximum deflection of ¾6".
- Beams that are 134" x 16" and deeper require multiple plies
- Beams and columns must remain straight to within 512/4608 (in.) of true alignment L is the unrestrained length of the member in feet.

See pages 28 and 29 for multiple-member beam connections. For applications not covered in this brochure, contact your Weyerhaeuser representative.

Column Orientation

Plank Orientation

ROOF FRAMING


DL= 15psf, SL= 25psf

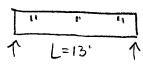
BI

$$1 = 8'$$

$$1 = 4.5(40) = 180 plf$$

B4

$$\Delta_{7L} = 0.32" = 1/450$$
 6×10

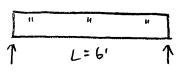

<u>B5</u>

B6

$$\uparrow L = |2| \qquad \uparrow$$

$$\omega = \left(\frac{9}{7}\right)(40) = 180 \rho M$$

B7


ZHENG, RESIDENCE 1

F5

ROOF FRAMING (CON'T)

DL= 15psf , SL= 25psf

B23

W=3 (40) = 120 plf

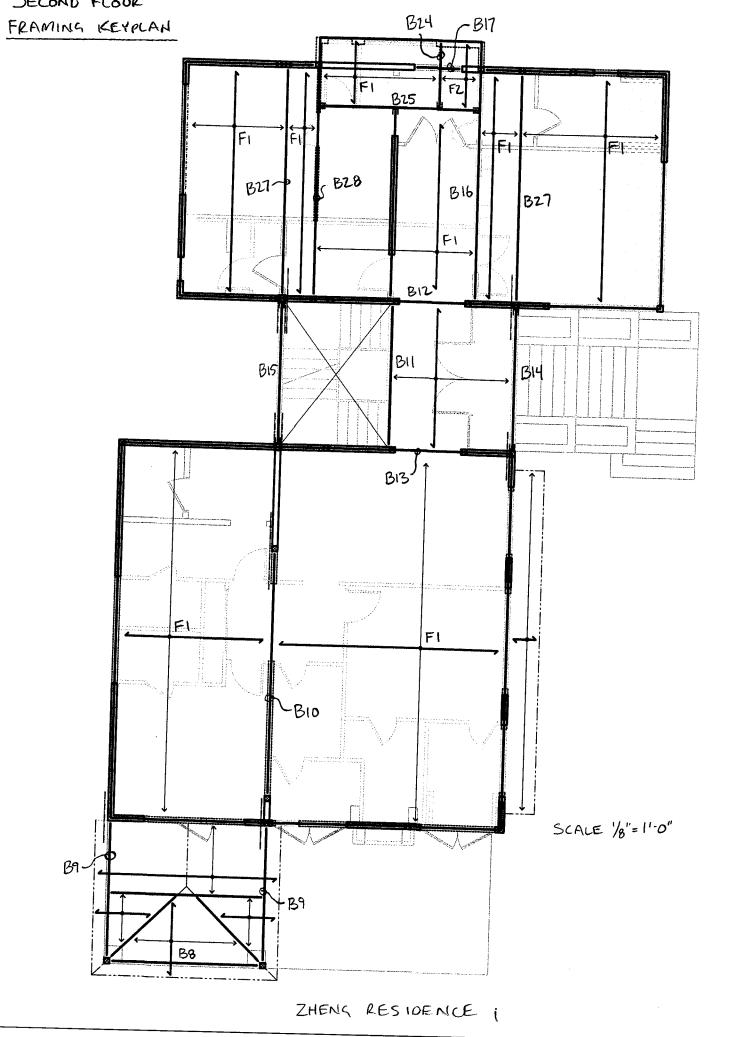
R=360# M=0.54k-1

fo= 247 pei fu= 25 psi

DTL= 0.03" = 1/2400

(2)Z×8

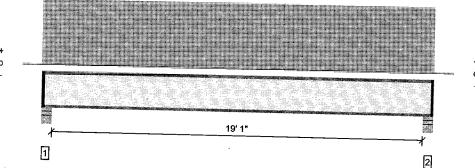
ZHENG RESIDENCE


Project

Designer

Project #

Date


F6

1 piece(s) 14" TJI® 210 @ 16" OC

Overall Length: 20'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Remite	nne	் ற இடிவருள்ளன் (கானேற்)
Member Reaction (lbs)	723 @ 4 1/2"	1460 (3.50")	Passed (49%)	1.00	1.0 D : 1.0 L (All C
Shear (ibs)	700 @ 5 1/2"	1945	Passed (36%)		1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3397 @ 10'	4490	Passed (76%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.331 @ 10'	0.481	Passed (L/698)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.455 @ 10'	0.962	Passed (L/508)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	47	45	Passed (L/308)	1	1.0 D + 1.0 L (All Spans)
 Deflection criteria: 11 (1/480) 	and T. (1/340)		1 d33cu		<u></u>

System: Floor Member Type: Joist Building Use: Residential Building Code: IBC Design Methodology: ASD

- ria: LL (L/480) and TL (L/240).
- Bracing (Lu): All compression edges (top and bottom) must be braced at 3' 9 1/2" o/c unless detailed otherwise. Proper attachment and positioning of lateral
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: 5/8" Gypsum ceiling.

		වීමා ගල	17(1)	(Post)	3(0)\$uppo	t5(lb3)	
STANDE	ાં	Atalleise.	Required	Deed	Floor Grafii	া তানা	Accessive
1 - Stud wall - DF	5.50"	3.75"	1.75"	200	533		1 3/4" Rim Board
2 - Stud wall - DF	5.50"	3.75"	1.75"	200	533	733	1 3/4" Rim Board

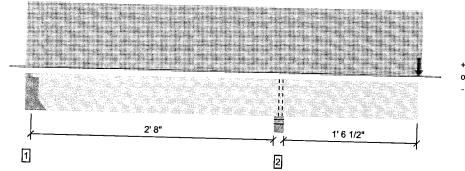
Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

ിത്തി	(Koertijon)	් ඉන්නෙන	Den) (0.20)	EVENTED EL	(Parament):
1 - Uniform (PSF)	0 to 20'	16"	15.0	40.0	Residential - Living Areas

Weyerhouser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator


SUSTAINABLE FORESTRY INITIATIVE

FB

1 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL @ 16" OC

Overall Length: 4' 11 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Zanki za kina niji na			•		are nonzontal.
Design Results	Agnation (Agnation)	Állowei)	Result-	IDE	Leatheambination (Pattern)
Member Reaction (lbs)	539 @ 3' 2 1/4"	4091 (5.50")	Passed (13%)		1.0.D + 0.7-
Shear (ibs)	176 @ 4' 2 1/2"	3633	 		1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	-336 @ 3' 2 1/4"		Passed (5%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
		7041	Passed (5%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.004 @ 4' 11 1/2"	0.200	Passed (2L/999+)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.007 @ 4' 11 1/2"	0.200	Passed		
TJ-Pro™ Rating	75	45	(2L/999+)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Deflection criteria: LL (L/480) an		45	Passed		

System: Floor Member Type : Joist Building Use: Residential Building Code: IBC Design Methodology: ASD

- Overhang deflection criteria: LL (0.2") and TL (0.2").
- Bracing (Lu): All compression edges (top and bottom) must be braced at 4' 8" o/c unless detailed otherwise. Proper attachment and positioning of lateral A 4% increase in the moment capacity has been added to account for repetitive member usage.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: 5/8" Gypsum ceiling.

Guaranta		Čeninglei 	n i h		(Mariston)	Upperiis/(Ib	3)	
STANDER	তেন	ंपनीतिक	Gennien	Desti	রিক্রেন ভিত্ত	Silon	ਹਿਤ।	Versternize
1 - Hanger on 9 1/2" SPF beam	3.50"	Hanger ¹	1.50"	44	93/-13	-46	137/-59	See note 1
2 - Stud wall - SPF	5.50"	5.50"	1.50"	298	201	121		
 Blocking Panels are assumed to carry 	no loads an	nlied directly at	2010 than and th	- 5 0 1 1 11	201	121	620	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- 1 See Connector grid below for additional information and/or requirements.

Connector Simpson Stron	<u>ുര്ണന്തില്</u>					
Support.	Mediei	Gordion	Was 200			
1 - Face Mount Hanger	IUS1.81/9.5	2.00"	्रवास्त्रपूर्वाः	Face (Faille	Menter (Itile	Vicerecone:
		2.00	N/A	8-10d x 1-1/2	2-10d x 1-1/2	

ીળસાંદ	leznen	ব্যহনেদ	0en (0en)	(6.60)	Simi (EAG)	@dined=
1 - Uniform (PSF)	0 to 4' 11 1/2"	16"	45.0	40.0	management of the same of	Residential - Living
2 - Point (lb)	4' 11 1/2"	N/A	45	-	75	Areas

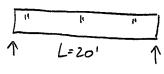
Wayethagueat Rose

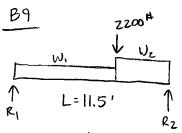
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to (www.woodbywy.com) Accessories (kum board, Biocking Panels and Squash Biocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.

SUSTAINABLE FORESTRY INITIATIVE

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

F9

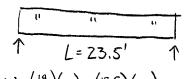

Forte Software Operator	Job Notes		
Craig Donison Buker Engineering (425) 289-89 craig@bukerengineering.com	ZHENG	RESIDENCE	1


12/17/2015 4:24:45 PM Forte v5.0, Design Engine: V6.4.0.40

SECOND FLOOR FRAMING

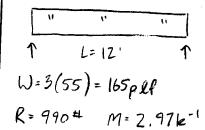
DL= 15psf, LL = 40psf, Se = 25psf

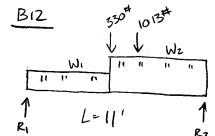
B8


$$\Delta_{TL} = 0.18''$$
= $1/_{766}$

RIM JOIST CALCUL ATIONS

WORST CASE 720# LMAX = 9'

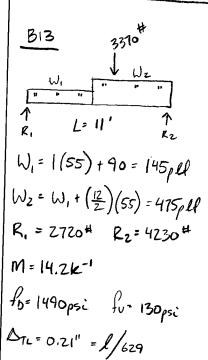

$$W = \left(\frac{19}{2}\right)(5\hat{s}) + 90 = 613 \rho \ell \ell$$

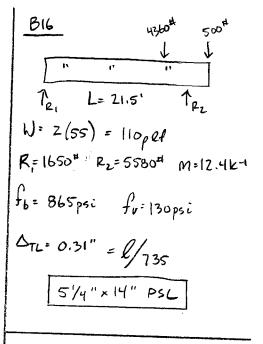

B10

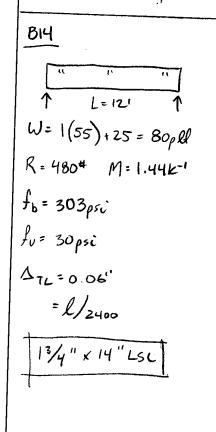
$$W = \left(\frac{19}{2}\right)(55) + \left(\frac{12.5}{2}\right)(55)$$

BII

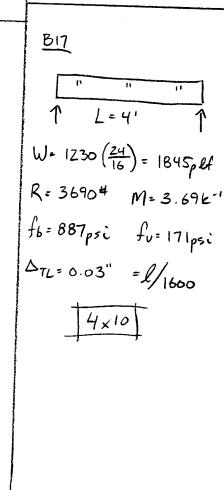
$$W_1 = \left(\frac{19}{2}\right)(55) + 90 = 613 \rho R$$



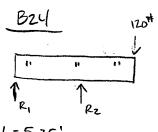

ZHENG RESIDENCE 1 Project


FIO

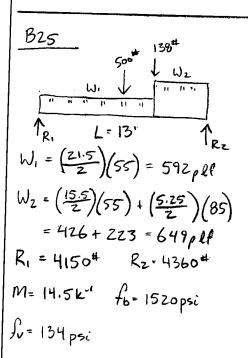
SECOND FLOOR FRAMING (CON'T)


DL = 15psf, LL = 40psf, SL = 25psf

3/2" x 14" LSL



ZHENG RESIDENCE 1


Project

FII

L=5.25'

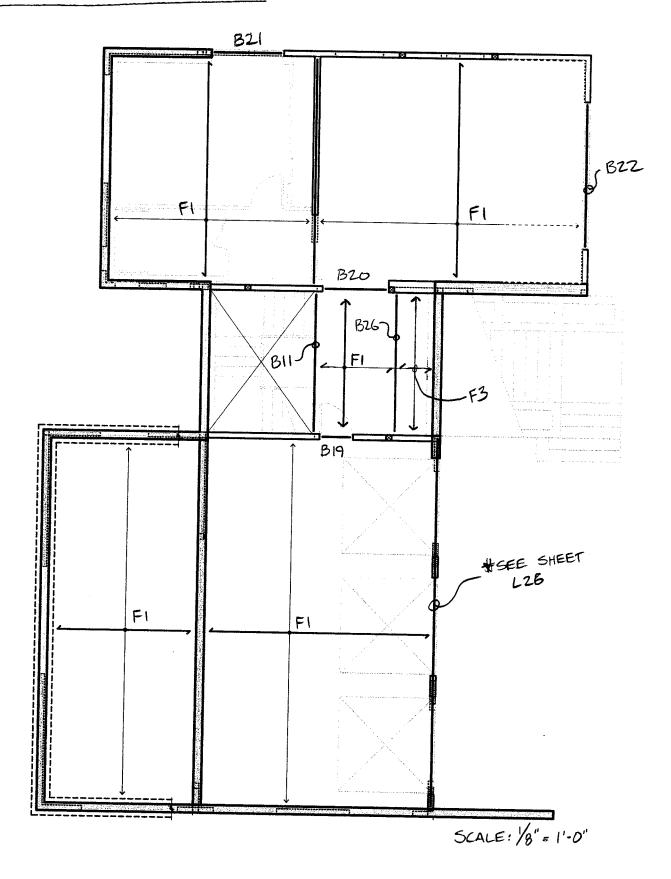
X EXTRA 30 PUL ADDED FOR CONCRETE + TILE BASE

31/2" x 14" LSE

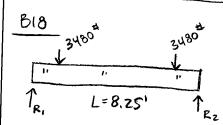
buker ENGINEERING ZHENG RESIDENCE

2. F. 1. 3. 2.

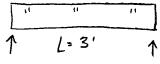
Project


Project #

Designer

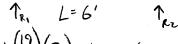

Date

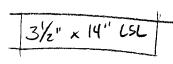
F12


She

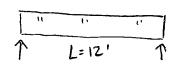
FIRST FLOOR FRAMING

BI9

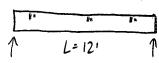

DL=15psf, LL=40psf, LL@DECK=60psf


BZO

$$W_1 = \left(\frac{19}{z}\right)(55) = 523 \rho e f$$


4×10

B21



BZZ

BZ6

ZHENG RESIDENCE !

FIH

Porch Jois	+a	_			
Por Cir Jois					
L =	3 ft 6 in	1	Lumber Type =	Hem-Fr	#2
W _{DL} =	52 psf	┛	F _b =	85	0 psi
W _{LL}	60 psf		F _v =		0 psi
Spacing =	16 in o.c.		E =	1,300,00	
Joist Size	2x8	1	C _D =		
S =	13.14 in ³	1	C _r =		
[=	47,63 in⁴	1	C _F =		
A =	10.88 in ²	1	incised	ne	
M =	229 #-ft	1			
R1 = R2 =	261 #		E' =	1300000 psi	7
f _b =	209 psi		F _b ' =	1173 psi	ок
f _v =	36.0 psi		F _v ' =	150 psi	ОК
$\Delta_{DL} =$	0.004 in	-	L	11110	1
Δ _{LL} =	0.004 in	=	L/	9629	1
$\Delta_{TL} =$	0.008 in	=	L/	5158	1

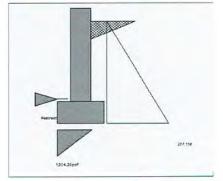
3' Cantilever Wall w/Slab on Grade Title Job # Dsgnr: CRB

2 OCT 2014

Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin


RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License: KW-06060889 License To: Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Criteria		
Retained Height	=	3.00 ft
Wall height above soil	=	0.50 ft
Slope Behind Wall	=	0.00:1
Height of Soil over Toe	=	0.00 in
Water height over heel	=	0.0 ft

Soil Data			
Allow Soil Bearing	=	2,000.0	psf
Equivalent Fluid Pressur	e Met		
Heel Active Pressure	=	35.0	psf/ft
	=		
Passive Pressure	=	250.0	psf/ft
Soil Density, Heel	=	110.00	pcf
Soil Density, Toe	=	0.00	pcf
Footing Soil Friction	=	0.400	
Soil height to ignore for passive pressure	_	12.00	in

Surcharge Loads

Surcharge Over Heel 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe 0.0 psf Used for Sliding & Overturning

Axial Load Applied to Stem

Axial Dead Load	=	0.0 lbs
Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Design Summary

Lateral Sliding Force

Wall Stability Ratios Overturning 1.77 OK Slab Resists All Sliding!

Total Bearing Load	=	675 lbs
resultant ecc.	=	4.52 in
Soil Pressure @ Toe	=	1,204 psf OK
Soil Pressure @ Heel	=	0 psf OK
Allowable	=	2,000 psf
Soil Pressure Less	Than	Allowable
ACI Factored @ Toe	=	1,445 psf
ACI Factored @ Heel	=	0 psf
Footing Shear @ Toe	=	0.0 psi OK
Footing Shear @ Heel	=	2.5 psi OK
Allowable	=	75.0 psi
Sliding Calcs Slab Resi	sts All	Sliding!

257.2 lbs

Lateral	Load	Applied	to	Stem
			-	

Lateral Load	=	0.0 #/ft
Height to Top	=	0.00 ft
Height to Bottom	=	0.00 ft
The above lateral load has been increased by a factor of		1.00
Wind on Exposed Ster	n =	0.0 psf

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Line Load
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

Ste

em Construction		Top Stem	
Design Height Above Ftg	ft =	Stem OK 0.00	
Wall Material Above "Ht"	=	Concrete	
Thickness	=	8.00	
Rebar Size	=	# 4	
Rebar Spacing	=	12.00	
Rebar Placed at Design Data	=	Edge	
fb/FB + fa/Fa	=	0.047	
Total Force @ Section	lbs =	252.0	
MomentActual	ft-#=	252.0	
MomentAllowable	=	5,412.6	
ShearActual	psi =	3.4	
ShearAllowable	psi =	75.0	
Wall Weight	=	100.0	
Rebar Depth 'd'	in =	6.25	
LAP SPLICE IF ABOVE	in =	18.72	
LAP SPLICE IF BELOW	in=		
HOOK EMBED INTO FT	Gin=	6.00	

Hook embedment reduced by stress ratio **Masonry Data**

fm	psi =		
Fs	psi =		
Solid Grouting	=		
Modular Ratio 'n'	=		
Short Term Factor	=		
Equiv. Solid Thick.	=		
Masonry Block Type	=	Medium Weight	
Masonry Design Method	=	ASD	
Concrete Data		ALV-MAN	
fc	psi =	2,500.0	
Fy	psi =	60,000.0	

Building Code	IBC 2012,ACI
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

Title 3' Cantilever Wall w/Slab on Grade Job# Dsgnr: CRB

Page: 2 OCT 2014

Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012, ACI 318-11, ACI 530-11

ns & S	Strengths
=	0.42 ft
=	1.08
=	1.50
=	10.00 in
=	0.00 in
=	0.00 in
=	0.00 ft
Fy =	60,000 psi
ty =	150.00 pcf
=	0.0018
@ E	3.00 in
	= = = = = = Fy = ity =

Footing Design Results						
	Toe	Heel				
=	1,445	0 psf				
=	110	0 ft-#				
=	13	47 ft-#				
=	97	47 ft-#				
=	0.00	2.52 psi				
=	75.00	75.00 psi				
=	None Spec'd	4-3-5-2-4-4				
=	None Spec'd					
=	None Spec'd					
		= 1,445 = 110 = 13 = 97 = 0.00 = 75.00 = None Spec'd = None Spec'd				

Other Acceptable Sizes & Spacings Toe: Not req'd, Mu < S * Fr

Heel: Not req'd, Mu < S * Fr Key: No key defined

Summary of Overturnin	& Resisting	Forces &	Moments
------------------------------	-------------	----------	---------

		OV	ERTURNING	3			RI	SISTING	
Item		Force lbs	Distance ft	Moment ft-#			Force	Distance ft	Moment ft-#
Heel Active Pressure	=	257.2	1.28	328.6	Soil Over Heel	=	137.4	1.29	177.5
Surcharge over Heel	=				Sloped Soil Over Heel	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ste	em =			
Load @ Stem Above So	oil =				* Axial Live Load on Ster	m =			
Same and the same and	=				Soil Over Toe	=			
					Surcharge Over Toe	=			
Tatal	_	257.2		328.6	Stem Weight(s)	=	350.0	0.75	262.6
Total		257.2	O.T.M.	320.0	Earth @ Stem Transition	ns=			
	=		=		Footing Weight	=	187.5	0.75	140.6
Resisting/Overturnin	g Rat	io	=	1.77	Key Weight	=			
Vertical Loads used f	for So	il Pressure	= 674	.9 lbs	Vert. Component	=			
					То	tal =	674.9	bs R.M.=	580.7

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title 3' Cantilever Wall w/Slab on Grade Job#

Dsgnr: CRB

Page: 2 OCT 2014 Date:

Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29

License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

Stem Design Height: 0.00 ft above top of footing

Lap Splice length for #4 bar specified in this stem design segment =

18.72 in

Development length for #4 bar specified in this stem design segment =

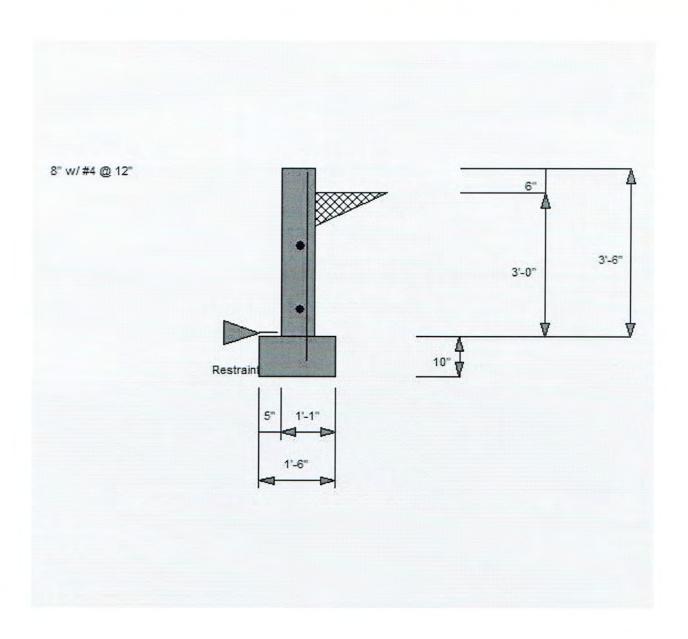
14.40 in

Hooked embedment length into footing for #4 bar specified in this stem design segment =

6.00 in

3' Cantilever Wall w/Slab on Grade Job# Dsgnr: CRB

Page: 2 OCT 2014 Date:


Description.... Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License: KW-06060889 License To: Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Title 4' Cantilever Wall w/Slab on Grade Job# Dsgnr: CRB

Description....

Cantilever Retaining Wall w/Slab on Grade

Page: 2 OCT 2014 Date:

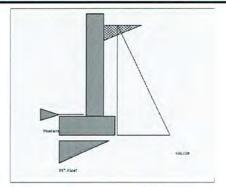
This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012, ACI 318-11, ACI 530-11

Criteria				
1	Retained Height			
١	Wall height above soil			
:	Slope Behind Wall			


Water height over heel =

Retained Height = 4.00 ft Wall height above soil = 0.50 ft Slope Behind Wall = 0.00 : 1				
=	4.00 ft			
=	0.50 ft			
=	0.00:1			
=	0.00 in			
	=			

0.0 ft

Soil Data

THE PERSON		
Allow Soil Bearing	=	2,000.0 psf
Equivalent Fluid Pressure	e Meth	nod
Heel Active Pressure	=	35.0 psf/ft
	=	
Passive Pressure	=	250.0 psf/ft
Soil Density, Heel	=	110.00 pcf
Soil Density, Toe	=	0.00 pcf
Footing Soil Friction	=	0.400
Soil height to ignore for passive pressure	=	12.00 in

Surcharge Loads

Surcharge Over Heel	=	0.0 psf
Used To Resist Sliding	2 & Ov	erturning
Surcharge Over Toe	=	0.0 psf
Used for Sliding & Ove	erturnir	ng

Axial Load Applied to Stem

Axial Dead Load	=	0.0 lbs
Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Design Summary

Lateral Sliding Force

Wall Stability Ratios Overturning 1.84 OK Slab Resists All Sliding!

Total Bearing Load	=	894	lbs	
resultant ecc.	=	5.03	in	
Soil Pressure @ Toe	=	957	psf	OK
Soil Pressure @ Heel	=	0	psf	OK
Allowable	=	2,000	psf	
Soil Pressure Less	Than A	Allowable	е	
ACI Factored @ Toe	=	1,149	psf	
ACI Factored @ Heel	=	0	psf	
Footing Shear @ Toe	=	5.0	psi	OK
Footing Shear @ Heel	=	3.0	psi	OK
Allowable	=	75.0	psi	
Sliding Calcs Slab Resis	sts All S	Sliding !		

408.8 lbs

Lateral	heo I	Ant	haile	to	Stom
Laterai	Luau		JIIGU	w	Offill

Lateral Load	=	0.0 #/ft
Height to Top	=	0.00 ft
Height to Bottom	=	0.00 ft
The above lateral load has been increased by a factor of		1.00
Wind on Exposed Stem	=	0.0 psf

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Line Load
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

St

tem Construction	1	op Stem	
Design Height Above Ftg	ft =	Stem OK 0.00	
Wall Material Above "Ht"	=	Concrete	
Thickness	=	8.00	
Rebar Size	=	# 4	
Rebar Spacing	=	12.00	
Rebar Placed at Design Data	=	Edge	
fb/FB + fa/Fa	=	0.110	
Total Force @ Section	lbs =	448.0	
MomentActual	ft-#=	597.3	
MomentAllowable	=	5,412.6	
ShearActual	psi=	6.0	
ShearAllowable	psi=	75.0	
Wall Weight	=	100.0	
Rebar Depth 'd'	in=	6.25	
LAP SPLICE IF ABOVE	in=	18.72	
LAP SPLICE IF BELOW	in=		
HOOK EMBED INTO FTO	in=	6.00	

Hook embedment reduced by stress ratio Masonry Data

musonily butt			
fm	psi =		
Fs	psi =		
Solid Grouting	=		
Modular Ratio 'n'	. =		
Short Term Factor	=		
Equiv. Solid Thick.	=		
Masonry Block Type	=	Medium Weight	
Masonry Design Method	=	ASD	
Concrete Data			
fc	psi =	2,500.0	
Fy	psi =	60,000.0	

Load Factors IBC 2012,ACI Building Code Dead Load 1.200 Live Load 1.600 Earth, H 1.600 Wind, W 1.000 Seismic, E 1.000

Title 4' Cantilever Wall w/Slab on Grade Job #

Dsgnr: CRB

Page: 2 OCT 2014 Date:

Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Footing Dimensions & Strengths						
Toe Width		=	1.00 ft			
Heel Width		=	1.08			
Total Footing W	/idth	=	2.08			
Footing Thickne	ss	=	10.00 in			
Key Width		=	0.00 in			
Key Depth		=	0.00 in			
Key Distance from	om Toe	=	0.00 ft			
fc = 2,50	0 psi	Fy =	60,000 psi			
Footing Concret	e Density	/ =	150.00 pcf			
Min. As %		=	0.0018			
Cover @ Top	2.00	@ E	3.00 i	n		

		Toe	Heel
Factored Pressure	=	1,149	0 psf
Mu': Upward	=	472	1 ft-#
Mu': Downward	=	13	59 ft-#
Mu: Design	=	459	58 ft-#
Actual 1-Way Shear	=	5.04	3.00 psi
Allow 1-Way Shear	=	75.00	75.00 psi
Toe Reinforcing	=	None Spec'd	20.00
Heel Reinforcing	=	None Spec'd	
Key Reinforcing	=	None Spec'd	

Other Acceptable Sizes & Spacings

Toe: Not reg'd, Mu < S * Fr Heel: Not req'd, Mu < S * Fr Key: No key defined

Summary	of Overturning	& Resisting	Forces &	Moments
---------	----------------	-------------	----------	----------------

			ERTURNII	VG			RE	SISTING	
Item		Force lbs	Distance ft	Moment ft-#			Force lbs	Distance ft	Moment ft-#
Heel Active Pressure	=	408.8	1.61	658.7	Soil Over Heel	=	183.2	1.87	343.4
Surcharge over Heel	=				Sloped Soil Over Heel	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ste	em =			
Load @ Stem Above So	il =				* Axial Live Load on Ster	m =			
	=				Soil Over Toe	=			
					Surcharge Over Toe	=			
Total		408.8	O.T.M.	658.7	Stem Weight(s)	=	450.0	1.33	600.0
Iotal		400.0	O.T.IVI.	050.7	Earth @ Stem Transition	ons=			
	=		-	•	Footing Weight	=	260.4	1.04	271.2
Resisting/Overturning	g Rat	io	=	1.84	Key Weight	=			
Vertical Loads used f	or Soi	Pressure	= 89	3.6 lbs	Vert. Component	=			
					To	tal =	893.6 1	bs R.M.=	1.214.6

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title 4' Cantilever Wall w/Slab on Grade Dsgnr: CRB Job#

Page: 2 OCT 2014 Date:

Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29

License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

Stem Design Height: 0.00 ft above top of footing

Lap Splice length for #4 bar specified in this stem design segment =

18.72 in

Development length for #4 bar specified in this stem design segment =

14.40 in

Hooked embedment length into footing for #4 bar specified in this stem design segment =

6.00 in

Title 4' Cantilever Wall w/Slab on Grade
Job # Dsgnr: CRB

Description....
Cantilever Retaining Wall w/Slab on Grade

Page: _____ Date: 2 OCT 2014

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

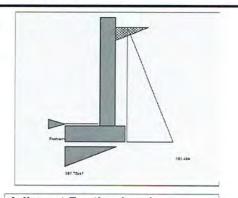
Code: IBC 2012,ACI 318-11,ACI 530-11

5' Cantilever Wall w/Slab on Grade Title Job# Dsgnr: CRB Description....

Page: 2 OCT 2014 Date:

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin


RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Criteria		
Retained Height	=	5.00 ft
Wall height above soil	=	0.50 ft
Slope Behind Wall	=	0.00:1
Height of Soil over Toe	=	0.00 in
Water height over heel	=	0.0 ft

Soil Data			
Allow Soil Bearing Equivalent Fluid Pressur	= e Meti	2,000.0	psf
Heel Active Pressure	=		psf/ft
	=		
Passive Pressure	=	250.0	psf/ft
Soil Density, Heel	=	110.00	pcf
Soil Density, Toe	=	0.00	pcf
Footing Soil Friction	=	0.400	
Soil height to ignore for passive pressure	=	12.00	in

Surcharge Loads

Surcharge Over Heel	=	0.0 psf
Used To Resist Sliding	& Ov	erturning
Surcharge Over Toe	=	0.0 psf
Used for Sliding & Ove	rturnir	ng

Axial Load Applied to Stem Axial Dead Load

Axial Load Eccentricity	=	0.0 in
Axial Live Load	=	0.0 lbs
Axiai Deau Luau	_	0.0 105

Design Summary

Wall Stability Ratios			
Overturning	=	1.70	OK
Slab Re	esists All SI	iding!	

Total Bearing Load	=	1,102	lbs	
resultant ecc.	=	6.66	in	
Soil Pressure @ Toe	=	998	psf	ОК
Soil Pressure @ Heel	=	0	psf	OK
Allowable	=	2,000	psf	
Soil Pressure Less	Than			
ACI Factored @ Toe	=	1,197	psf	
ACI Factored @ Heel	=	0	psf	
Footing Shear @ Toe	=	9.7	psi	OK
Footing Shear @ Heel	=	3.7	psi	OK
Allowable	=	75.0	nei	

Sliding Calcs	Slab I	Resists All	Sliding!	
Lateral Sliding	Force	=	595.5	Ibs

Lateral	Load	Apr	plied	to	Stem

Lateral Load	=	0.0 #/
Height to Top	=	0.00 ft
Height to Bottom	=	0.00 ft
The above lateral load has been increased by a factor of		1.00
Wind on Exposed Ste	m =	0.0 ps

nd on	Exposed Stem =	0.0 psf

Adjacent Footing Load Adjacent Footing Load 0.0 lbs Footing Width 0.00 ft **Eccentricity** 0.00 in 0.00 ft Wall to Ftg CL Dist Footing Type Line Load Base Above/Below Soil 0.0 ft at Back of Wall

0.300

Poisson's Ratio

St	em Construction		Top Stem	
	Design Height Above Ftg	ft=	Stem OK 0.00	
	Wall Material Above "Ht"	=	Concrete	
	Thickness	=	8.00	
	Rebar Size	=	# 4	
	Rebar Spacing	=	12.00	
	Rebar Placed at Design Data	=	Edge	
	fb/FB + fa/Fa	=	0.216	
	Total Force @ Section	lbs =	700.0	
	MomentActual	ft-# =	1,166.7	
	MomentAllowable	=	5,412.6	
	Shear Actual	psi=	9.3	
	ShearAllowable	psi=	75.0	
	Wall Weight	=	100.0	
	Rebar Depth 'd'	in =	6.25	
	LAP SPLICE IF ABOVE	in=	18.72	
	LAP SPLICE IF BELOW	in=		
	HOOK EMBED INTO FTO	Gin=	6.00	

Hook embedment reduced by stress ratio **Masonry Data**

fm	psi =		
Fs	psi =		
Solid Grouting	=		
Modular Ratio 'n'	=		
Short Term Factor	=		
Equiv. Solid Thick.	=		
Masonry Block Type	=	Medium Weight	
Masonry Design Method	=	ASD	
Concrete Data			
fc	psi =	2,500.0	
Fy	psi=	60,000.0	

Load Factors	
Building Code	IBC 2012,ACI
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

5' Cantilever Wall w/Slab on Grade Title Job# Dsgnr: CRB

Page: Date: 2 OCT 2014

Description.... Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Footing Dim	ensio	ns & S	Strengths
Toe Width		=	1.50 ft
Heel Width		=	1.08
Total Footing W	idth	=	2.58
Footing Thickness	ss	=	10.00 in
Key Width		=	0.00 in
Key Depth		=	0.00 in
Key Distance fro	om Toe	=	0.00 ft
fc = 2,500	0 psi	Fv =	60,000 psi
Footing Concret		y =	150.00 pcf
Min. As %		=	0.0018
Cover @ Top	2.00	@ 1	3.00 ir

Footing Desig	n l	Results	
		Toe	Heel
Factored Pressure	=	1,197	0 psf
Mu': Upward	=	1,042	0 ft-#
Mu': Downward	=	75	70 ft-#
Mu: Design	=	967	70 ft-#
Actual 1-Way Shear	=	9.68	3.74 psi
Allow 1-Way Shear	=	75.00	75.00 psi
Toe Reinforcing	=	None Spec'd	27-20-192
Heel Reinforcing	=	None Spec'd	
Key Reinforcing	=	None Spec'd	

Toe: Not reg'd, Mu < S * Fr Heel: Not req'd, Mu < S * Fr Key: No key defined

Summary	of Overturning	& Resisting	Forces &	Moments
---------	----------------	-------------	----------	---------

-		OV	ERTURNING	3			RE	SISTING	0.11
Item		Force lbs	Distance ft	Moment ft-#			Force	Distance ft	Moment ft-#
Heel Active Pressure	=	595.5	1.94	1,157.9	Soil Over Heel	=	229.0	2.37	543.8
Surcharge over Heel	=				Sloped Soil Over Heel	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ste	em=			
Load @ Stem Above So	oil =				* Axial Live Load on Ster	m =			
300 - Total Control	=				Soil Over Toe	=			
					Surcharge Over Toe	=			
Total	_	595.5	O.T.M.	1,157.9	Stem Weight(s)	=	550.0	1.83	1,008.3
lotai		595.5	O. I .IVI.	1,157.9	Earth @ Stem Transitio	ns=			
	=		=		Footing Weight	=	322.9	1.29	417.0
Resisting/Overturnin	g Rat	io	=	1.70	Key Weight	=			
Vertical Loads used t	for So	il Pressure	= 1,101	.9 lbs	Vert. Component	=			
					То	tal =	1,101.9 lb	s R.M.=	1,969.1

1,101.9 lbs R.M.= * Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title 5' Cantilever Wall w/Slab on Grade Job# Dsgnr: CRB

Page: Date: 2 OCT 2014

Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29

License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

Stem Design Height: 0.00 ft above top of footing

Lap Splice length for #4 bar specified in this stem design segment =

18.72 in

Development length for #4 bar specified in this stem design segment =

14.40 in

Hooked embedment length into footing for #4 bar specified in this stem design segment =

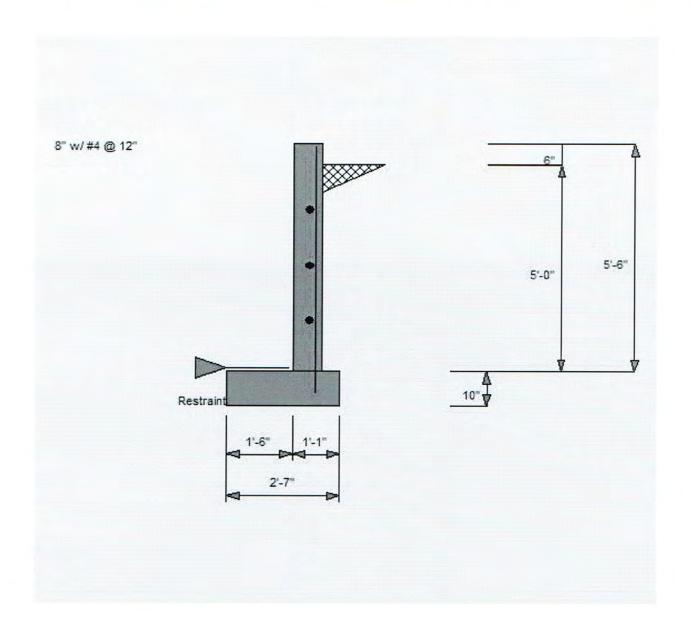
6.00 in

Title Job # 5' Cantilever Wall w/Slab on Grade Dsgnr: CRB

Cantilever Retaining Wall w/Slab on Grade

Page: Date:

2 OCT 2014


This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License: KW-06060889 License To: Buker Engineering, LLC

Cantilevered Retaining Wall Design

Description....

Code: IBC 2012,ACI 318-11,ACI 530-11

6' Cantilever Wall w/Slab on Grade Title Job # Dsgnr: CRB

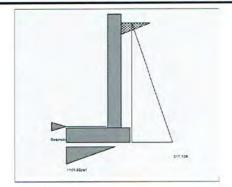
Description....

Cantilever Retaining Wall w/Slab on Grade

Page: 2 OCT 2014

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014,	Build 10.14.9.29
License: KW-06060889	neoring LLC


Cantilevered Retaining Wall Design

Code: IBC 2012, ACI 318-11, ACI 530-11

Criteria			
Retained Height	=	6.00 ft	
Wall height above soil	=	0.50 ft	
Slope Behind Wall	=	0.00:1	
Height of Soil over Toe	=	0.00 in	
Water height over heel	=	0.0 ft	

Soil Data Allow Soil Bearing 2,000.0 psf Equivalent Fluid Pressure Method 35.0 psf/ft Heel Active Pressure = 250.0 psf/ft Passive Pressure

Soil Density, Heel 110.00 pcf 0.00 pcf Soil Density, Toe Footing||Soil Friction 0.400 Soil height to ignore 12.00 in for passive pressure

Surcharge Loads

Surcharge Over Heel 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe 0.0 psf Used for Sliding & Overturning

Axial Load Applied to Stem

Axial Dead Load	=	0.0 lbs
Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Lateral Load Applied to Stem

Lateral Load	=	0.0 #/ft
Height to Top	=	0.00 ft
Height to Bottom	=	0.00 ft
The above lateral load has been increased by a factor of	1.00	
Wind on Exposed Ste	em =	0.0 psf

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Line Load
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

Design Summary

Wall Stability Ratios			
Overturning	=	1.56	OK
Slab Res	sists All S	liding!	

Total Bearing Load	=	1,310	lbs	
resultant ecc.	=	8.98	in	
Soil Pressure @ Toe	=	1,101		
Soil Pressure @ Heel	=			OK
Allowable	=	2,000	psf	
Soil Pressure Less	Than	Allowable	e	
ACI Factored @ Toe	=	1,321	psf	
ACI Factored @ Heel	=	0	psf	
Footing Shear @ Toe	=	14.3	psi	OK
Footing Shear @ Heel	=	4.4	psi	OK
Allowable	=	75.0	psi	

817.2 lbs

Sliding Calcs Slab Resists All Sliding!

Lateral Sliding Force

Stem Construction		op Stem	
Design Height Above Ftg	ft =	Stem OK 0.00	
Wall Material Above "Ht"	=	Concrete	
Thickness	=	8.00	
Rebar Size	=	# 4	
Rebar Spacing	=	12.00	
Rebar Placed at Design Data	=	Edge	
fb/FB + fa/Fa	=	0.372	
Total Force @ Section	lbs =	1,008.0	
MomentActual	ft-# =	2,016.0	
MomentAllowable	=	5,412.6	
ShearActual	psi=	13.4	
ShearAllowable	psi =	75.0	
Wall Weight	=	100.0	
Rebar Depth 'd'	in=	6.25	

LAP SPLICE IF ABOVE

Fy

LAP SPLICE IF BELOW in =

HOOK EMBED INTO FTG in =

M D-4-	Hook embedment reduced by stress ratio	
Masonry Data		-

psi =

psi =	
psi =	
=	
=	
=	
=	
=	Medium Weight
=	ASD
	- TANKARA
psi =	2,500.0
	psi = = = = = = = = = =

60,000.0

18.72

6.00

Load Factors Building Code IBC 2012,ACI Dead Load 1.200 Live Load 1.600 Earth, H 1.600 1.000 Wind, W Seismic, E 1.000

6' Cantilever Wall w/Slab on Grade Title Job# Dsgnr: CRB

Page: 2 OCT 2014 Date:

Description.... Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Footing Din	nension	s & S	strengths
Toe Width		=	2.00 ft
Heel Width		=	1.08
Total Footing V	Vidth	=	3.08
Footing Thickne	ess	=	10.00 in
Key Width		=	0.00 in
Key Depth		=	0.00 in
Key Distance fr	om Toe	=	0.00 ft
fc = 2,50	00 psi	Fy =	60,000 psi
Footing Concre	te Density	=	150.00 pcf
Min. As %		=	0.0018
Cover @ Top	2.00	@ E	3.00 in

Footing Desig	n l	Results	
		Toe	Heel
Factored Pressure	=	1,321	0 psf
Mu' : Upward	=	1,902	0 ft-#
Mu' : Downward	=	175	82 ft-#
Mu: Design	=	1,727	82 ft-#
Actual 1-Way Shear	=	14.33	4.36 psi
Allow 1-Way Shear	=	75.00	75.00 psi
Toe Reinforcing	=	#4@11.11 in	
Heel Reinforcing	=	None Spec'd	
Key Reinforcing		None Spec'd	

Other Acceptable Sizes & Spacings

Toe: #4@ 11.11 in, #5@ 17.22 in, #6@ 24.44 in, #7@ 33.33 in, #8@ 43.89 in, #9@ 5

Heel: Not req'd, Mu < S * Fr Key: No key defined

Summary	of Overturning	& Resisting	Forces & Moments
THE OWNER OF TAXABLE PARTY.	THE RESERVE OF THE PERSON NAMED IN	THE RESERVE OF THE PERSON NAMED IN	

		OV	ERTURNING	i			R	SISTING	
Item		Force	Distance	Moment ft-#			Force	Distance ft	Moment ft-#
Heel Active Pressure	_	817.2	2.28	1,861.3	Soil Over Heel	=	274.8	2.87	789.9
Surcharge over Heel	=	011.2	2.20	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sloped Soil Over Heel	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ste	em=			
Load @ Stem Above So	oil =				* Axial Live Load on Ster	m =			
	=				Soil Over Toe	=			
					Surcharge Over Toe	=			
4.0	_	217.0		4 004 0	Stem Weight(s)	=	650.0	2.33	1,516.7
Total		817.2	O.T.M.	1,861.3	Earth @ Stem Transition	ons=			
	=		=		Footing Weight	=	385.4	1.54	594.1
Resisting/Overturnin	g Rai	io	=	1.56	Key Weight	=			
Vertical Loads used			= 1,310	.2 lbs	Vert. Component	=			
					To	otal =	1,310.2	lbs R.M.=	2,900.7

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title 6' Cantilever Wall w/Slab on Grade
Job# Dsgnr: CRB

rintion

Page: ____ Date: 2 OCT 2014

Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29

License : KW-06060889 License To : Buker Engineering, LLC Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

Stem Design Height: 0.00 ft above top of footing

Lap Splice length for #4 bar specified in this stem design segment =

18.72 in

Development length for #4 bar specified in this stem design segment =

14.40 in

Hooked embedment length into footing for #4 bar specified in this stem design segment =

6.00 in

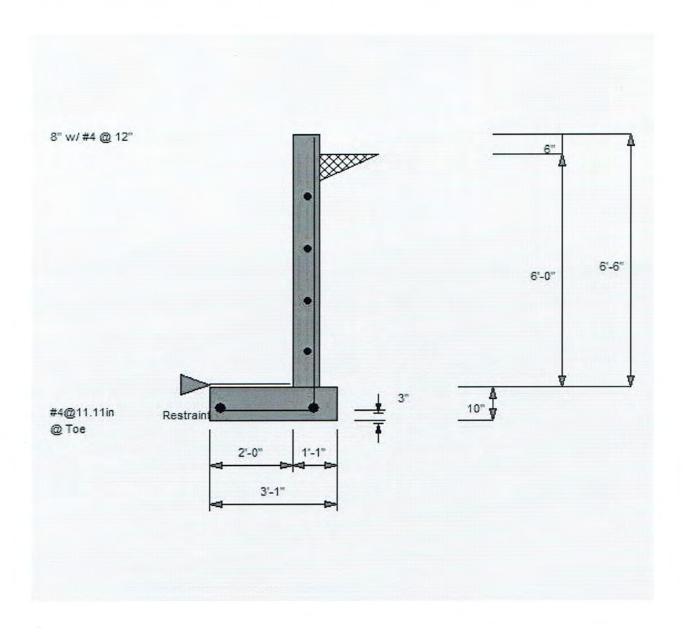
East Mercer Parcel 1

Ret 15

Title 6' Cantilever Wall w/Slab on Grade
Job # Dsgnr: CRB

Description....

Page: _____ Date: 2 OCT 2014


Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Title 7' Cantailever Wall w/Slab on Grade
Job # Dsgnr: CRB

rintion .

Dogin. On D

Page: Date: 2 Of

2 OCT 2014

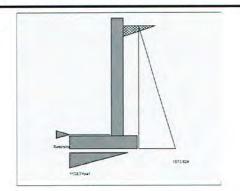
Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design


Code: IBC 2012,ACI 318-11,ACI 530-11

Cr	teria	

Retained Height	=	7.00 ft
Wall height above soil	=	0.50 ft
Slope Behind Wall	=	0.00:1
Height of Soil over Toe	=	0.00 in
Water height over heel	=	0.0 ft

Soil Data

All and the second seco			
Allow Soil Bearing	=	2,000.0	psf
Equivalent Fluid Pressure	e Meth	nod	
Heel Active Pressure	=	35.0	psf/ft
	=		
Passive Pressure	=	250.0	psf/ft
Soil Density, Heel	=	110.00	pcf
Soil Density, Toe	=	0.00	pcf
Footing Soil Friction	=	0.400	
Soil height to ignore for passive pressure	=	12.00	in

Surcharge Loads

Surcharge Over Heel	=	0.0 psf
Used To Resist Sliding	& Ov	erturning
Surcharge Over Toe	=	0.0 psf
Used for Sliding & Ove	rturnir	na

Axial Load Applied to Stem

Axial Dead Load	=	0.0 lbs
Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Lateral Load Applied to Stem

Lateral Load	=	0.0 #/ft
Height to Top	=	0.00 ft
Height to Bottom	=	0.00 ft
The above lateral load has been increased by a factor of		1.00
Wind on Exposed Ste	em =	0.0 psf

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Line Load
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

Design Summary

Wall Stability Rat	ios		
Overturning	=	1.67	OK
Slab	Resists All Sli	ding!	

Total Bearing Load	=	1,786	lbs	
resultant ecc.	=	9.40	in	
Soil Pressure @ Toe	=	1,134		
Soil Pressure @ Heel	=			OK
Allowable	=	2,000	psf	
Soil Pressure Less	Than			
ACI Factored @ Toe	=	1,360	psf	
ACI Factored @ Heel	=		psf	
Footing Shear @ Toe	=	18.4	psi	OK
Footing Shear @ Heel	=	8.8	psi	OK
Allowable	=	75.0	psi	
A SECTION OF THE SECTION ASSESSMENT ASSESSME				

Allowable	_	75.0	ha
Sliding Calcs	Slab Resists All	Sliding!	
Lateral Sliding	Force =	1.073.8	lbs

Stem Construction		Top Stem		
Design Height Above Ftg	ft=	Stem OK 0.00		
Wall Material Above "Ht"	=	Concrete		
Thickness	=	8.00		
Rebar Size	=	# 4		
Rebar Spacing	=	12.00		
Rebar Placed at Design Data	=	Edge		
fb/FB + fa/Fa	=	0.591		
		4 070 0		

Jesigii Data		
fb/FB + fa/Fa	=	0.591
Total Force @ Section	lbs =	1,372.0
MomentActual	ft-#=	3,201.3
MomentAllowable	=	5,412.6
ShearActual	psi =	18.3
ShearAllowable	psi =	75.0
Wall Weight	=	100.0
Rebar Depth 'd'	in=	6.25
LAP SPLICE IF ABOVE	in=	18.72
LAP SPLICE IF BELOW	in=	
HOOK EMBED INTO FT	Gin=	6.00

Hook embedment reduced by stress ratio

psi=		
psi=		
=		
=		
=		
=		
=	Medium Weight	
=	ASD	
psi =	2,500.0	
psi =	60,000.0	
	psi = = = = = = = = = = = = = = = = = = =	psi = psi = = = = = = = = = = = = = = = = = = =

Load Factors Building Code IBC 2012,ACI Dead Load 1.200 Live Load 1.600 Earth, H 1.600 Wind, W 1.000 Seismic, E 1.000

7' Cantailever Wall w/Slab on Grade Title Job #

Dsgnr: CRB

Page: 2 OCT 2014 Date:

Description.... Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License: KW-06060889 License To: Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Footing Dimensions & Strengths				
Toe Width		=	2.25 ft	
Heel Width		=	1.42	
Total Footing W	/idth	=	3.67	
Footing Thickne	ess	=	10.00 in	
Key Width		=	0.00 in	
Key Depth		=	0.00 in	
Key Distance fr	om Toe	=	0.00 ft	
fc = 2.50	0 psi	Fy =	60,000 psi	
Footing Concre	te Density	=	150.00 pcf	
Min. As %		=	0.0018	
Cover @ Top	2.00	@	Btm.= 3.00 in	

		Toe	Heel
Factored Pressure	=	1,360	0 psf
Mu' : Upward	=	2,624	1 ft-#
Mu' : Downward	=	126	302 ft-#
Mu: Design	=	2,498	301 ft-#
Actual 1-Way Shear	=	18.43	8.82 psi
Allow 1-Way Shear	=	75.00	75.00 psi
Toe Reinforcing	=	#4@11.11 in	
Heel Reinforcing	=		
Key Reinforcing	=	None Spec'd	

Other Acceptable Sizes & Spacings

Toe: #4@ 11.11 in, #5@ 17.22 in, #6@ 24.44 in, #7@ 33.33 in, #8@ 43.89 in, #9@ 5

Heel: Not req'd, Mu < S * Fr Key: No key defined

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNING	3				SISTING	
Item		Force	Distance ft	Moment ft-#			Force lbs	Distance ft	Moment ft-#
Heel Active Pressure	_	1,073.8	2.61	2,803.9	Soil Over Heel	-	577.8	3.29	1,901.9
Surcharge over Heel	=				Sloped Soil Over Hee	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	d =			
Added Lateral Load	=				Axial Dead Load on S	tem =			
Load @ Stem Above So	il =				* Axial Live Load on St	em =			
The Control of the Co	=				Soil Over Toe	=			
					Surcharge Over Toe	=			
	_	4 070 0		2 002 0	Stem Weight(s)	=	750.0	2.58	1,937.5
Total		1,073.8	O.T.M.	2,803.9	Earth @ Stem Transit	tions=			
	=		=		Footing Weight	=	458.4	1.83	840.4
Resisting/Overturnin	g Rat	io	=	1.67	Key Weight	=			
Vertical Loads used t	•		= 1,786	.1 lbs	Vert. Component	=		8-	
					1	otal =	1,786.1	bs R.M.=	4,679.8

^{*} Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

7' Cantailever Wall w/Slab on Grade Title Job# Dsgnr: CRB

Page:

Date: 2 OCT 2014

Description.... Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29

License: KW-06060889 License To: Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

0.00 ft above top of footing Stem Design Height:

Lap Splice length for #4 bar specified in this stem design segment =

18.72 in

Development length for #4 bar specified in this stem design segment =

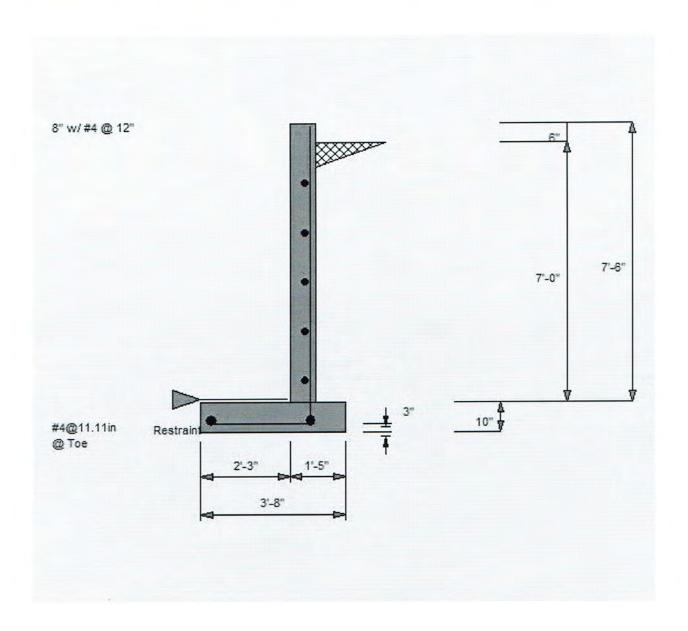
14.40 in

Hooked embedment length into footing for #4 bar specified in this stem design segment =

6.00 in

7' Cantailever Wall w/Slab on Grade Title Job # Dsgnr: CRB

Page:


Description.... Cantilever Retaining Wall w/Slab on Grade Date: 2 OCT 2014

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

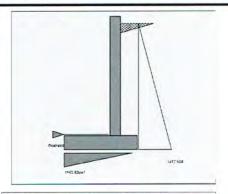
8' Cantilever Wall w/Slab on Grade Title Job# Dsgnr: CRB Description....

Page:

2 OCT 2014 Date:

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin


RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Criteria		
Retained Height	=	8.00 ft
Wall height above soil	=	0.50 ft
Slope Behind Wall	=	0.00:1
Height of Soil over Toe	=	0.00 in
Water height over heel	=	0.0 ft

Soil Data		
Allow Soil Bearing	=	2,000.0 psf
Equivalent Fluid Pressur	e Met	hod
Heel Active Pressure	=	35.0 psf/f
	=	
Passive Pressure	=	250.0 psf/f
Soil Density, Heel	=	110.00 pcf
Soil Density, Toe	=	0.00 pcf
Footing Soil Friction	=	0.400
Soil height to ignore for passive pressure	-	12.00 in

Surcharge Loads

Surcharge Over Heel	=	0.0 psf
Used To Resist Sliding	& Ov	erturning
Surcharge Over Toe	=	0.0 psf
Used for Sliding & Ove	rturnir	na

Axial Load Applied to Stem

Axial Dead Load	=	0.0 lbs
Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Design Summary

75.0 psi

Wall Stability Ratios 1.77 OK Overturning Slab Resists All Sliding!

Total Bearing Load	=	2,393 lbs
resultant ecc.	=	10.06 in

Soil Pressure @ Toe	=	1,164 psf OK
Soil Pressure @ Heel	=	0 psf OK
Allowable	=	2,000 psf
Soil Pressure Les	s Than	Allowable
ACI Factored @ Toe	=	1,397 psf
ACI Factored @ Heel	=	0 psf
Footing Shear @ Toe	=	17.4 psi OK
Footing Shear @ Heel	=	10.1 psi OK

Sliding Calcs Slab Resists All Sliding! Lateral Sliding Force 1,417.5 lbs

Allowable

Lateral Load Applied to Stem

Lateral Load	=	0.0 #/f
Height to Top	=	0.00 ft
Height to Bottom	=	0.00 ft
The above lateral load has been increased by a factor of		1.00

Wind on Exposed Stem = 0.0 psf

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Line Load
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

em Construction		op Stem		
Design Height Above Ftg	ft =	Stem OK 0.00		
Wall Material Above "Ht"	=	Concrete		
Thickness	=	8.00		
Rebar Size	=	# 5		
Rebar Spacing	=	12.00		
Rebar Placed at Design Data	-	Edge		
fb/FB + fa/Fa	=	0.588		
Total Force @ Section	lbs =	1,792.0		
MomentActual	ft-# =	4,778.7		
MomentAllowable	=	8,121.3		
ShearActual	psi=	24.1		
ShearAllowable	psi=	75.0		
Wall Weight	=	100.0		
Rebar Depth 'd'	in=	6.19		
LAP SPLICE IF ABOVE	in=	23.40		
LAP SPLICE IF BELOW	in=			
HOOK EMBED INTO FT	Gin=	6.02		

Hook embedment reduced by stress ratio Masonry Data

fm	psi=	
Fs	psi=	
Solid Grouting	=	
Modular Ratio 'n'	=	
Short Term Factor	=	
Equiv. Solid Thick.	=	
Masonry Block Type	=	Medium Weight
Masonry Design Method	=	ASD
Concrete Data		C. Jako

2,500.0 fc psi = Fy psi = 60,000.0

Load Factors	
Building Code	IBC 2012,ACI
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

Title 8' Cantilever Wall w/Slab on Grade
Job# : Dsgnr: CRB

Page: ______ Date: 2 OCT 2014

Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Footing Dim	ension	ıs &	Strengths
Toe Width		=	2.75 ft
Heel Width		=	1.67
Total Footing W	idth	=	4.42
Footing Thickne	ss	=	12.00 in
Key Width		=	0.00 in
Key Depth		=	0.00 in
Key Distance fro	om Toe	=	0.00 ft
fc = 2,50	0 psi	Fy =	60,000 psi
Footing Concret		y =	150.00 pcf
Min. As %		=	0.0018
Cover @ Top	2.00	@	Btm.= 3.00 in

Footing Desig	n I	Results	
	_	Toe	Heel
Factored Pressure	=	1,397	0 psf
Mu': Upward	=	4,104	19 ft-#
Mu': Downward	=	185	618 ft-#
Mu: Design	=	3,918	599 ft-#
Actual 1-Way Shear	=	17.41	10.13 psi
Allow 1-Way Shear	=	75.00	75.00 psi
Toe Reinforcing	=	#7@16.00 in	
Heel Reinforcing		#6@16.00 in	
Key Reinforcing	=		

Other Acceptable Sizes & Spacings

Toe: #4@ 9.26 in, #5@ 14.35 in, #6@ 20.37 in, #7@ 27.78 in, #8@ 36.57 in, #9@ 46

Heel: Not req'd, Mu < S * Fr Key: No key defined

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNING	3				ESISTING	
Item		Force	Distance ft	Moment ft-#			Force lbs	Distance ft	Moment ft-#
Heel Active Pressure	_	1,417.5	3.00	4,252.5	Soil Over Heel	=	880.3	3.92	3,448.0
Surcharge over Heel	_	.,	-	2,-12,5	Sloped Soil Over Heel	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ste	em =			
Load @ Stem Above So	oil =				* Axial Live Load on Ster	m =			
	=				Soil Over Toe	=			
					Surcharge Over Toe	=			
	_	4 447.5		4,252.5	Stem Weight(s)	=	850.0	3.08	2,620.8
Total		1,417.5	O.T.M.	4,252.5	Earth @ Stem Transition	ns=			
	=		=		Footing Weight	=	662.6	2.21	1,463.2
Resisting/Overturning	g Rat	tio	=	1.77	Key Weight	=			
Vertical Loads used			= 2,392	.8 lbs	Vert. Component	=		January 2	
					То	tal =	2,392.8	lbs R.M.=	7,532.0

^{*} Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title 8' Cantilever Wall w/Slab on Grade
Job# Dsgnr: CRB

Description....

Cantilever Retaining Wall w/Slab on Grade

Page: ____ Date: 2 OCT 2014

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29

License: KW-06060889 License To: Buker Engineering, LLC Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

Stem Design Height: 0.00 ft above top of footing

Lap Splice length for #5 bar specified in this stem design segment =

23.40 in

Development length for #5 bar specified in this stem design segment =

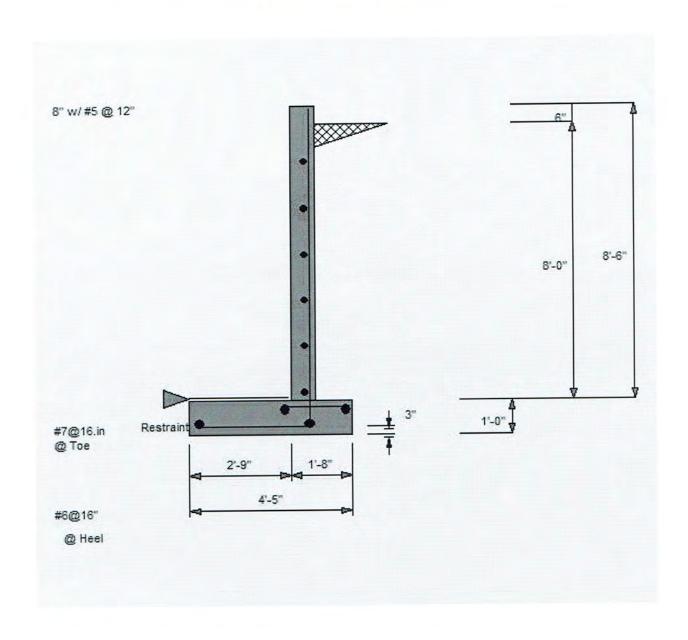
18.00 in

Hooked embedment length into footing for #5 bar specified in this stem design segment =

6.00 in

8' Cantilever Wall w/Slab on Grade Title Job # Dsgnr: CRB

Page: Date: 2 OCT 2014


Description.... Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

East Mercer Parcel 1

Ret 24

Title 9' Cantilever Wall w/Slab on Grade
Job # Dsgnr: CRB

Description....

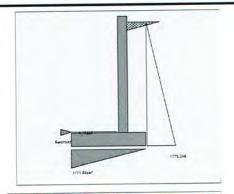
Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11


Date:

Page:

2 OCT 2014

Criteria			
Retained Height	=	9.00 ft	
Wall height above soil	=	0.50 ft	
Slope Behind Wall	=	0.00:1	
Height of Soil over Toe	=	0.00 in	
Water height over heel	=	0.0 ft	

Soil Data			
Allow Soil Bearing	=	2,000.0	psf
Equivalent Fluid Pressure	e Meth	nod	
Heel Active Pressure	=	35.0	psf/ft
	=		
Passive Pressure	=	250.0	psf/ft
Soil Density, Heel	=	110.00	pcf
Soil Density, Toe	=	0.00	pcf
Footing Soil Friction	=	0.400	
Soil height to ignore for passive pressure	=	12.00	in

Surcharge Loads

Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 psf Used for Sliding & Overturning

Axial Load Applied to Stem

Axial Dead Load	=	0.0 lbs
Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Design Summary

Lateral Sliding Force

Wall Stability Ratios
Overturning = 1.87 OK
Slab Resists All Sliding!

Total Bearing Load	=	3,027 lbs	
resultant ecc.	=	10.33 in	
Soil Pressure @ Toe	=	1,172 psf	OK
Soil Pressure @ Heel	=	0 psf	OK
Allowable	=	2,000 psf	
Soil Pressure Less	Than	Allowable	
ACI Factored @ Toe	=	1,406 psf	
ACI Factored @ Heel	=	0 psf	
Footing Shear @ Toe	=	18.9 psi	OK
Footing Shear @ Heel	=	12.0 psi	OK
Allowable	=	75.0 psi	
Sliding Calcs Slab Resi	sts All	Sliding!	

1,779.3 lbs

Lateral Load Applied to Stem		
Lateral Load	=	0.0 #/ft
Height to Top	=	0.00 ft
Height to Bottom	=	0.00 ft
The above lateral load has been increased by a factor of		1.00
Wind on Exposed Ste	m =	0.0 psf

Adjacent Footing Load		
Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Line Load
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

Stem Construction		op Stem	
Design Height Above Ftg	ft =	Stem OK 0.00	
Wall Material Above "Ht"	=	Concrete	
Thickness	=	8.00	
Rebar Size	=	# 5	
Rebar Spacing	=	12.00	
Rebar Placed at	=	Edge	
Design Data —	_		
fb/FB + fa/Fa	=	0.838	
Total Force @ Section	lbs =	2,268.0	
MomentActual	ft-#=	6,804.0	
MomentAllowable	=	8,121.3	
ShearActual	psi=	30.5	
ShearAllowable	psi=	75.0	
Wall Weight	=	100.0	
Rebar Depth 'd'	in=	6.19	
LAP SPLICE IF ABOVE	in=	23.40	
LAP SPLICE IF BELOW	in=		
HOOK EMBED INTO FTO		8.70	

Load Factors ——— Building Code	IBC 2012,ACI
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

Masonny Data	Hook embedment reduced by stress ratio			
Masonry Data fm		psi =		
Fs		psi =		
The second section of the second section is		psi –		
Solid Grouting		=		
Modular Ratio 'n'		=		
Short Term Factor		=		
Equiv. Solid Thick.		=		
Masonry Block Type		=	Medium Weight	
Masonry Design Method		=	ASD	
Concrete Data	_	-	2.21.02	
fc		psi =	2,500.0	
Fy		psi=	60,000.0	

Title 9' Cantilever Wall w/Slab on Grade
Job # Dsgnr: CRB

ription

Page: ____ Date: 2 OCT 2014

Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Footing Dim	ensior	ıs & S	Strengths
Toe Width Heel Width	r.u.	=	3.25 ft 1.92 5.17
Total Footing W Footing Thickne		=	13.00 in
Key Width Key Depth Key Distance from	om Toe	=	0.00 in 0.00 in 0.00 ft
fc = 2,50 Footing Concret Min. As % Cover @ Top	0 psi	=	60,000 psi 150.00 pcf 0.0018 8tm.= 3.00 in

		Toe	Heel
Factored Pressure	=	1,406	0 psf
Mu' : Upward	=	5,869	89 ft-#
Mu' : Downward	=	237	1,081 ft-#
Mu: Design	=	5,631	992 ft-#
Actual 1-Way Shear	=	18.90	12.03 psi
Allow 1-Way Shear	=	75.00	75.00 psi
Toe Reinforcing	=	#5@12.00 in	
Heel Reinforcing		None Spec'd	
Key Reinforcing	=	None Spec'd	

Other Acceptable Sizes & Spacings

Toe: #4@ 8.55 in, #5@ 13.25 in, #6@ 18.80 in, #7@ 25.64 in, #8@ 33.76 in, #9@ 42

Heel: Not req'd, Mu < S * Fr Key: No key defined

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNING	3				ESISTING	122
Item		Force	Distance ft	Moment ft-#			Force lbs	Distance ft	Moment ft-#
Heel Active Pressure	=	1,779.3	3.36	5,980.4	Soil Over Heel	=	1,237.8	4.54	5,622.0
Surcharge over Heel	=			Christian .	Sloped Soil Over Heel	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ste	em =			
Load @ Stem Above So	oil =				* Axial Live Load on Ster	m =			
	=				Soil Over Toe	=			
					Surcharge Over Toe	=			
	_	4 770 0	OTM -	5,980.4	Stem Weight(s)	=	950.0	3.58	3,404.2
Total		1,779.3	O. I .IVI.	5,960.4	Earth @ Stem Transition	ons=			
	=		=		Footing Weight	=	839.6	2.58	2,169.2
Resisting/Overturnin	g Rat	tio	=	1.87	Key Weight	=			
Vertical Loads used t			= 3,027	5 lbs	Vert. Component	=			
					To	otal =	3.027.5	lbs R.M.=	11,195.4

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

9' Cantilever Wall w/Slab on Grade Title Dsgnr: CRB Job#

Page: Date: 2 OCT 2014

Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

Stem Design Height: 0.00 ft above top of footing

Lap Splice length for #5 bar specified in this stem design segment =

23.40 in

Development length for #5 bar specified in this stem design segment =

18.00 in

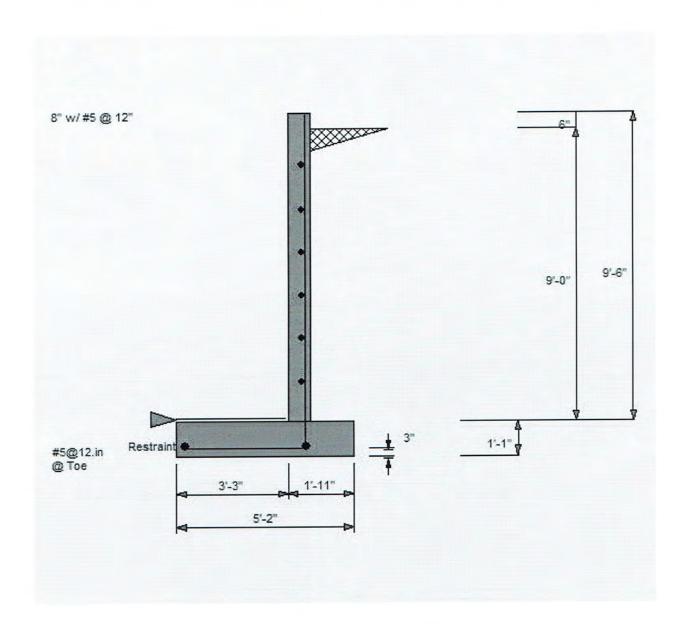
Hooked embedment length into footing for #5 bar specified in this stem design segment =

6.00 in

Title Job # 9' Cantilever Wall w/Slab on Grade Dsgnr: CRB

Description....

Page: _____ 2 OCT 2014 Date:


Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

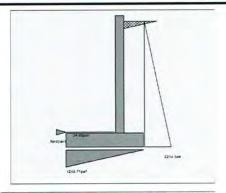
10' Cantilever Wall w/Slab on Grade Title Job# Dsgnr: CRB

Page:

Date: 2 OCT 2014

Description.... Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin


RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Criteria		
Retained Height	=	10.00 ft
Wall height above soil	=	0.50 ft
Slope Behind Wall	=	0.00:1
Height of Soil over Toe	=	0.00 in
Water height over heel	=	0.0 ft

Soil Data			
Allow Soil Bearing	=	2,000.0	psf
Equivalent Fluid Pressur	e Met	nod	
Heel Active Pressure	=	35.0	psf/ft
	=		
Passive Pressure	=	250.0	psf/ft
Soil Density, Heel	=	110.00	pcf
Soil Density, Toe	=	0.00	pcf
Footing Soil Friction	=	0.400	
Soil height to ignore for passive pressure	=	12.00	in

Surcharge Loads

Surcharge Over Heel	=	0.0 psf
Used To Resist Sliding	g & Ov	erturning
Surcharge Over Toe	=	0.0 psf
Used for Sliding & Ove	erturnir	ng

Axial Load Applied to Stem Axial Dead Load 0.0 lbs

Axial Load Eccentricity	=	0.0 in
Axial Live Load	=	0.0 lbs

Design Summary

Wall Stability Ratios	5		
Overturning	=	1.92	OK
Slab R	esists All SI	idina!	

Total Bearing Load	=	3,784 lbs	
resultant ecc.	=	11.16 in	
Soil Pressure @ Toe	=	1,249 psf OK	
Soil Pressure @ Heel	=	35 psf OK	
Allowable	=	2,000 psf	
Soil Pressure Less	Than	Allowable	
ACI Factored @ Toe	=	1,498 psf	
ACI Factored @ Heel	=	42 psf	
Footing Shear @ Toe	=	18.8 psi OK	
Footing Shear @ Heel	=	13.0 psi OK	
Allowable	=	75.0 psi	
Sliding Calcs Slab Resi	sts Al	Sliding!	
Lateral Sliding Force	=	2,214.8 lbs	

Lateral Load Applied to Stem				
Lateral Load	=	0.0 #/ft		
Height to Top	=	0.00 ft		
Height to Bottom	=	0.00 ft		
The above lateral load has been increased by a factor of		1.00		
Wind on Exposed Ste	em =	0.0 psf		

Adjacent Footing Load				
Adjacent Footing Load	=	0.0 lbs		
Footing Width	=	0.00 ft		
Eccentricity	=	0.00 in		
Wall to Ftg CL Dist	=	0.00 ft		
Footing Type		Line Load		
Base Above/Below Soil at Back of Wall	=	0.0 ft		
Poisson's Ratio	=	0.300		

Stem Construction		Top Stem		
Design Height Above Ftg	ft=	Stem OK 0.00		
Wall Material Above "Ht"	=	Concrete		
Thickness	=	8.00		
Rebar Size	=	# 6		
Rebar Spacing	=	12.00		
Rebar Placed at Design Data	=	Edge		
fb/FB + fa/Fa	=	0.923		
Total Force @ Section	lbs =	2,800.0		
MomentActual	ft-#=	9,333.3		
MomentAllowable	=	10,109.5		
ShearActual	psi=	41.5		
ShearAllowable	psi=	75.0		
Wall Weight	=	100.0		
Rebar Depth 'd'	in=	5.63		
LAP SPLICE IF ABOVE	in=	28.08		
LAP SPLICE IF BELOW	in=			
HOOK EMBED INTO FT	Gin=	11.53		

Masonry Data Hook em	bedme	nt reduced by stress ratio
fm	psi=	
Fs	psi =	
Solid Grouting	=	
Modular Ratio 'n'	=	
Short Term Factor	=	
Equiv. Solid Thick.	=	
Masonry Block Type	=	Medium Weight
Masonry Design Method	= b	ASD
Concrete Data		N. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10
fc	psi =	2,500.0
Ev	nei =	60 000 0

Load Factors	
Building Code	IBC 2012,ACI
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

10' Cantilever Wall w/Slab on Grade Title Dsgnr: CRB Job#

Description....

Page: 2 OCT 2014 Date:

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License: KW-06060889 License To: Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Footing	Dimensio	ns & S	Strengths
Toe Width		=	3.75 ft
Heel Width		=	2.15
Total Footi	ng Width	=	5.90
Footing Thi	ckness	=	15.00 in
Key Width		=	0.00 in
Key Depth		=	0.00 in
	ce from Toe	=	0.00 ft
fc =	2,500 psi	Fy =	60,000 psi
Footing Co	ncrete Densit	y =	150.00 pcf
Min. As %		=	0.0018
Cover @ T	op 2.00	@	Btm.= 3.00 in

		Toe	Heel
Factored Pressure	=	1,498	42 psf
Mu' : Upward	=	8,365	179 ft-#
Mu' : Downward	=	333	1,693 ft-#
Mu: Design	=	8,032	1,514 ft-#
Actual 1-Way Shear	=	18.79	13.03 psi
Allow 1-Way Shear	=	75.00	75.00 psi
Toe Reinforcing	=	#7@16.00 in	
Heel Reinforcing	=	#6@16.00 in	
Key Reinforcing		None Spec'd	

Other Acceptable Sizes & Spacings

Toe: #4@ 7.41 in, #5@ 11.48 in, #6@ 16.30 in, #7@ 22.22 in, #8@ 29.26 in, #9@ 37

Heel: Not req'd, Mu < S * Fr Key: No key defined

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNING	i				ESISTING	
Item		Force	Distance ft	Moment ft-#			Force lbs	Distance ft	Moment ft-#
Heel Active Pressure		2.214.8	3.75	8,305.7	Soil Over Heel	=	1,628.4	5.16	8,397.2
Surcharge over Heel	=	_,	716.7	1000	Sloped Soil Over Heel	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ste	m=			
Load @ Stem Above So	= lic				* Axial Live Load on Sten	n =			
	=				Soil Over Toe	=			
					Surcharge Over Toe	=			
	_	0.0440	OT 14	8.305.7	Stem Weight(s)	=	1,050.0	4.08	4,287.5
Total		2,214.8	O.T.M.	6,305.7	Earth @ Stem Transitio	ns=			
	=		=		Footing Weight	=	1,105.7	2.95	3,260.1
Resisting/Overturnin	g Ra	tio	=	1.92	Key Weight	=			
Vertical Loads used t	•		= 3,784.	1 lbs	Vert. Component	=			-
					Tot	tal =	3 784 1	lbs R.M.=	15.944.8

^{*} Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

10' Cantilever Wall w/Slab on Grade Title Job#

Dsgnr: CRB

Page: 2 OCT 2014 Date:

Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License: KW-06060889 License To: Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012, ACI 318-11, ACI 530-11

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

Stem Design Height: 0.00 ft above top of footing

Lap Splice length for #6 bar specified in this stem design segment =

28.08 in

Development length for #6 bar specified in this stem design segment =

21.60 in

Hooked embedment length into footing for #6 bar specified in this stem design segment =

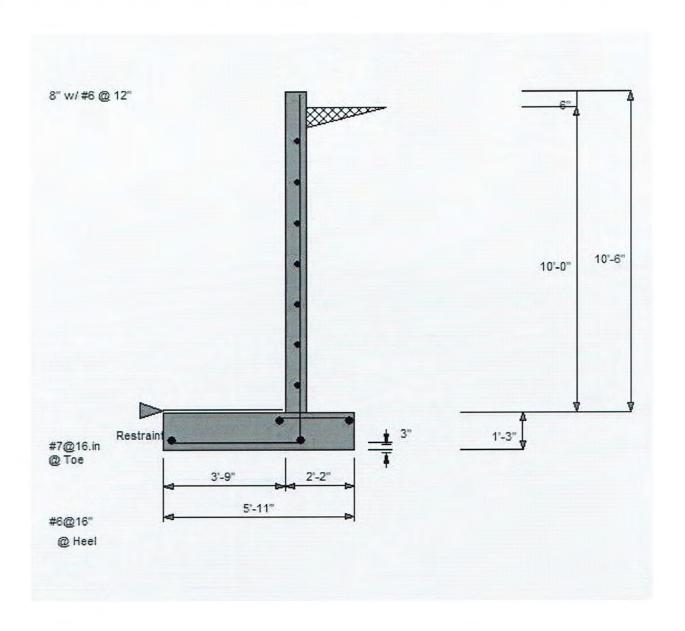
6.00 in

Title 10' Cantilever Wall w/Slab on Grade Job#

Dsgnr: CRB

Page: 2 OCT 2014 Date:

Description....


Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

East Mercer Parcel 1

Ret32

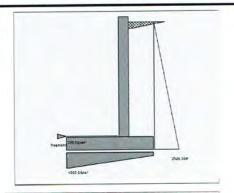
11' Cantilever Wall w/Slab on Grade Title Dsgnr: CRB Job#

Description....

Cantilever Retaining Wall w/Slab on Grade

Page: 2 OCT 2014

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin


RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Criteria		
Retained Height	=	11.00 ft
Wall height above soil	=	0.50 ft
Slope Behind Wall	=	0.00:1
Height of Soil over Toe	=	0.00 in
Water height over heel	=	0.0 ft

Soil Data			
Allow Soil Bearing	=	2,000.0	psf
Equivalent Fluid Pressur	e Meth	nod	
Heel Active Pressure	=	35.0	psf/ft
	=		
Passive Pressure	=	250.0	psf/ft
Soil Density, Heel	=	110.00	pcf
Soil Density, Toe	=	0.00	pcf
Footing Soil Friction	=	0.400	
Soil height to ignore for passive pressure	=	12.00	in

Surcharge Loads

Surcharge Over Heel = 0.0 ps Used To Resist Sliding & Overturning 0.0 psf 0.0 psf Surcharge Over Toe Used for Sliding & Overturning

Axial Load Applied to Stem

Axial Dead Load	=	0.0 lbs
Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Design Summary

Wall Stability Ratios Overturning 2.44 OK Slab Resists All Sliding!

Total Bearing Load	=	5,185 lbs	
resultant ecc.	=	6.84 in	
Soil Pressure @ Toe	=	1,086 psf (oĸ
Soil Pressure @ Heel	=	379 psf (OK
Allowable	=	2,000 psf	
Soil Pressure Less	Than	Allowable	
ACI Factored @ Toe	=	1,303 psf	
ACI Factored @ Heel	=	454 psf	
Footing Shear @ Toe	=	21.0 psi (OK
Footing Shear @ Heel	=	14.7 psi (OK
Allowable	=	75.0 psi	

2,626.1 lbs

Sliding Calcs Slab Resists All Sliding!

Lateral Sliding Force

Lateral Load Applied to Stem			
Lateral Load	=	0.0 #/ft	
Height to Top	=	0.00 ft	
Height to Bottom	=	0.00 ft	
The above lateral load has been increased by a factor of		1.00	
Wind on Exposed Ste	em =	0.0 psf	

Adjacent Footing Load			
Adjacent Footing Load	=	0.0 lbs	
Footing Width	=	0.00 ft	
Eccentricity	=	0.00 in	
Wall to Ftg CL Dist	=	0.00 ft	
Footing Type		Line Load	
Base Above/Below Soil at Back of Wall	=	0.0 ft	
Poisson's Ratio	=	0.300	

Stem Construction	T	op Stem	
Design Height Above Ftg	ft =	Stem OK 0.00	
Wall Material Above "Ht"	=	Concrete	
Thickness	=	10.00	
Rebar Size	=	# 6	
Rebar Spacing	=	12.00	
Rebar Placed at Design Data	=	Edge	
fb/FB + fa/Fa	=	0.883	
Total Force @ Section II	bs=	3,388.0	
MomentActual ft	-#=	12,422.7	
MomentAllowable	=	14,069.5	
ShearActual p	si=	37.0	
ShearAllowable p	osi =	75.0	
Wall Weight	=	125.0	
Rebar Depth 'd'	in=	7.63	
LAP SPLICE IF ABOVE LAP SPLICE IF BELOW	in = in =	28.08	
HOOK EMBED INTO FTG	***	11.02	

Load Factors ———— Building Code	IBC 2012,ACI
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

Masonry Data	Hook embe	edmei	nt reduced by stress ratio	
fm		psi =		
Fs		psi=		
Solid Grouting		=		
Modular Ratio	'n'	=		
Short Term Fa	ctor	=		
Equiv. Solid Th	nick.	=		
Masonry Block	Туре	=	Medium Weight	
Masonry Desig	n Method	=	ASD	
Concrete Data	_		2.500.0	
fc		psi=	2,500.0	
Fv		psi =	60.000.0	

11' Cantilever Wall w/Slab on Grade Title Job#

Dsgnr: CRB

Page: Date:

2 OCT 2014

Description.... Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Footing	Dimension	ns & S	trengths	
Toe Width	1	=	4.25 ft	
Heel Widt	h	=	2.83	
Total Foot	ing Width	=	7.08	
Footing Th	nickness	=	15.00 in	
Key Width		=	0.00 in	
Key Depth	1	=	0.00 in	
Key Dista	nce from Toe	=	0.00 ft	
fc =	2,500 psi	Fy =	60,000 ps	i
Footing Co	oncrete Density	y =	150.00 pc	f
Min. As %		=	0.0018	
Cover @	Гор 2.00	@ E	3.00 stm.=	in

Footing Desig	jn l	Results	
		Toe	Heel
Factored Pressure	=	1,303	454 psf
Mu': Upward	=	10,232	1,068 ft-#
Mu': Downward	=	120	3,353 ft-#
Mu: Design	=	10,113	2,285 ft-#
Actual 1-Way Shear	=	21.00	14.70 psi
Allow 1-Way Shear	=	75.00	75.00 psi
Toe Reinforcing	=	# 5 @ 8.00 in	
Heel Reinforcing	=		
Key Reinforcing	=	None Spec'd	

Other Acceptable Sizes & Spacings

Toe: #4@ 7.41 in, #5@ 11.48 in, #6@ 16.30 in, #7@ 22.22 in, #8@ 29.26 in, #9@ 37

Heel: Not req'd, Mu < S * Fr Key: No key defined

Summan	of Overturning	& Pacietina	Forces &	Momente
Summary	OI OVEILUIIIII	G INCOISTING	I UICES G	MOINELIES

		OV	ERTURNING	·				SISTING	14 - 17 - 12
Item		Force	Distance ft	Moment ft-#			Force lbs	Distance ft	Moment ft-#
Heel Active Pressure	-	2,626.1	4.08	10,723.2	Soil Over Heel	=	2,419.6	6.08	14,718.8
Surcharge over Heel	=	Contract of the contract of th			Sloped Soil Over Heel	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ste	em =			
Load @ Stem Above So	il =				* Axial Live Load on Ster	m =			
	=				Soil Over Toe	=			
					Surcharge Over Toe	=			
Tatal	_	2 626 4	OTM -	10 722 2	Stem Weight(s)	=	1,437.5	4.67	6,708.3
Total		2,626.1	O.T.M.	10,723.2	Earth @ Stem Transition	ons=			
	=		=		Footing Weight	=	1,328.1	3.54	4,703.3
Resisting/Overturnin	g Rat	io	=	2.44	Key Weight	=			
Vertical Loads used f	or So	Pressure	= 5,185.	2 lbs	Vert. Component	=			
					To	tal =	5.185.2	bs R.M.=	26,130.5

^{5,185.2} lbs R.M.= Total = * Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

11' Cantilever Wall w/Slab on Grade Title Job# Dsgnr: CRB

Page: Date: 2 OCT 2014

Description.... Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29

License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

0.00 ft above top of footing Stem Design Height:

Lap Splice length for #6 bar specified in this stem design segment =

28.08 in

Development length for #6 bar specified in this stem design segment =

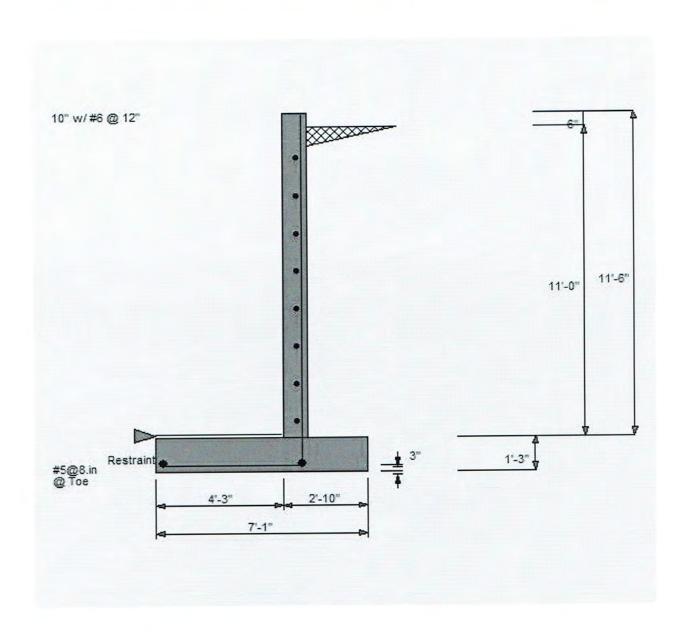
21.60 in

Hooked embedment length into footing for #6 bar specified in this stem design segment =

6.00 in

11' Cantilever Wall w/Slab on Grade Title Dsgnr: CRB Job#

Description.... Cantilever Retaining Wall w/Slab on Grade


Page: Date: 2 OCT 2014

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License: KW-06060889 License To: Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

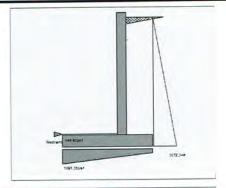
12' Cantilever Wall w/Slab on Grade Title Job#

Dsgnr: CRB

Page: Date: 2 OCT 2014

Description.... Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin


RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012, ACI 318-11, ACI 530-11

Criteria		
Retained Height	=	12.00 ft
Wall height above soil	=	0.50 ft
Slope Behind Wall	=	0.00:1
Height of Soil over Toe	=	0.00 in
Water height over heel	=	0.0 ft

Soil Data			
Allow Soil Bearing	=	2,000.0	psf
Equivalent Fluid Pressur	e Meth	nod	
Heel Active Pressure	=	35.0	psf/ft
	=		
Passive Pressure	=	250.0	psf/ft
Soil Density, Heel	=	110.00	pcf
Soil Density, Toe	=	0.00	pcf
Footing Soil Friction	=	0.400	
Soil height to ignore for passive pressure	=	12.00	in

Surcharge Loads

Surcharge Over Heel 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe 0.0 psf Used for Sliding & Overturning

Axial Load Applied to Stem

Axial Dead Load	=	0.0 lbs
Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Lateral Load Applied to Stem

Lateral Load	=	0.0 #/ft
Height to Top	=	0.00 ft
Height to Bottom	=	0.00 ft
The above lateral load has been increased by a factor of		1.00
Wind on Exposed Ste	m =	0.0 psf

Adjacent Footing Load

=	0.0 lbs
=	0.00 ft
=	0.00 in
=	0.00 ft
	Line Load
=	0.0 ft
=	0.300

Design Summary

Lateral Sliding Force

Wall Stability Ra	tios		
Overturning	=	2.49	OK
Sla	b Resists All Sli	ding!	

Total Bearing Load	=	6,001 lbs	
resultant ecc.	=	6.65 in	
Soil Pressure @ Toe	=	1,091 psf Ok	
Soil Pressure @ Heel	=	441 psf Ok	
Allowable	=	2,000 psf	
Soil Pressure Less	Than	Allowable	
ACI Factored @ Toe	=	1,310 psf	
ACI Factored @ Heel	=	529 psf	
Footing Shear @ Toe	=	24.6 psi Ok	(
Footing Shear @ Heel	=	17.5 psi Ok	(
Allowable	=	75.0 psi	
Sliding Calcs Slab Resi	sts All	Sliding!	

3,072.3 lbs

Stem Construction	1	Top Stem			
Design Height Above Ftg	ft=	Stem OK 0.00			
Wall Material Above "Ht"	=	Concrete			
Thickness	=	10.00			
Rebar Size	=	# 6			
Rebar Spacing	=	9.00			
Rebar Placed at Design Data	=	Edge			
fb/FB + fa/Fa	=	0.881			
Total Force @ Section	lbs =	4,032.0			
MomentActual	ft-#=	16,128.0			
MomentAllowable	=	18,302.4			
ShearActual	psi=	44.1			
ShearAllowable	psi=	75.0			
Wall Weight	=	125.0			
Rebar Depth 'd'	in=	7.63			
LAP SPLICE IF ABOVE	in=	28.08			
LAP SPLICE IF BELOW	in=				
HOOK EMBED INTO FTO	Gin=	10.96			

Vall Material Above "Ht"	=	Concrete	
Thickness	=	10.00	
Rebar Size	=	# 6	
Rebar Spacing	=	9.00	
Rebar Placed at esign Data	=	Edge	
b/FB + fa/Fa	=	0.881	
Total Force @ Section	lbs =	4,032.0	
MomentActual	ft-#=	16,128.0	
MomentAllowable	=	18,302.4	
ShearActual	psi=	44.1	
ShearAllowable	psi=	75.0	
Wall Weight	=	125.0	
Rebar Depth 'd'	in=	7.63	
AP SPLICE IF ABOVE	in=	28.08	
AP SPLICE IF BELOW	in=		
HOOK EMBED INTO FT	Gin=	10.96	

Load Factors ———— Building Code	IBC 2012,ACI
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic. E	1.000

Masonry Data Hook e	mbedme	nt reduced by stress ratio
fm	psi=	
Fs	psi =	
Solid Grouting	=	
Modular Ratio 'n'	=	
Short Term Factor	=	
Equiv. Solid Thick.	=	
Masonry Block Type	=	Medium Weight
Masonry Design Meth	od =	ASD
Concrete Data		
fc	psi =	2,500.0
Fy	psi =	60,000.0

12' Cantilever Wall w/Slab on Grade Title Job# Dsgnr: CRB

Description....

Cantilever Retaining Wall w/Slab on Grade

Page: 2 OCT 2014 Date:

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License: KW-06060889 License To: Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012, ACI 318-11, ACI 530-11

Footing Dim	ensions	& Stren	gths
Toe Width	-	= 4	.75 ft
Heel Width		= 3	.08
Total Footing W	idth =	7	.83
Footing Thickne	ss =	= 15	.00 in
Key Width		= 0	.00 in
Key Depth		= 0	.00 in
Key Distance fro	om Toe	= 0	.00 ft
fc = 2,50	Opsi Fy		000 psi
Footing Concret	e Density =	150	.00 pcf
Min. As %		0.00	018
Cover @ Top	2.00	@ Btm.=	3.00 in

		_Toe	Heel
Factored Pressure	=	1,310	529 psf
Mu' : Upward	=	12,994	1,528 ft-#
Mu' : Downward	=	134	4,578 ft-#
Mu: Design	=	12,860	3,050 ft-#
Actual 1-Way Shear	=	24.61	17.52 psi
Allow 1-Way Shear	=	75.00	75.00 psi
Toe Reinforcing	=	#5@8.00 in	
Heel Reinforcing		None Spec'd	
Key Reinforcing	=	None Spec'd	

Other Acceptable Sizes & Spacings

Toe: #4@ 7.05 in, #5@ 10.93 in, #6@ 15.52 in, #7@ 21.16 in, #8@ 27.86 in, #9@ 35

Heel: Not req'd, Mu < S * Fr Key: No key defined

Summary of Overturning & Resisting Forces & Moments

	OV	ERTURNING				RESISTING			
Item		Force lbs	Distance ft	Moment ft-#			Force lbs	Distance ft	Moment ft-#
Heel Active Pressure	=	3,072.3	4.42	13,569.5	Soil Over Heel	=	2,969.6	6.71	19,920.3
Surcharge over Heel	=				Sloped Soil Over Heel	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ste	em=			
Load @ Stem Above So	oil =				* Axial Live Load on Ster	m =			
	=				Soil Over Toe	=			
					Surcharge Over Toe	=			
T-4-1	-	0.070.0		12 FCO F	Stem Weight(s)	=	1,562.5	5.17	8,072.9
Total		3,072.3	O.T.M.	13,569.5	Earth @ Stem Transition	ons=			
	=		=		Footing Weight	=	1,468.7	3.92	5,752.1
Resisting/Overturnin	g Rat	io	=	2.49	Key Weight	=			
Vertical Loads used t	for So	il Pressure	= 6,000.	7 lbs	Vert. Component	=			
					To	tal =	6,000.7	bs R.M.=	33,745.3

^{*} Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

12' Cantilever Wall w/Slab on Grade Title Job#

Dsgnr: CRB

Page: Date: 2 OCT 2014

Description....

Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29

License : KW-06060889 License To : Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012, ACI 318-11, ACI 530-11

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

0.00 ft above top of footing Stem Design Height:

Lap Splice length for #6 bar specified in this stem design segment =

28.08 in

Development length for #6 bar specified in this stem design segment =

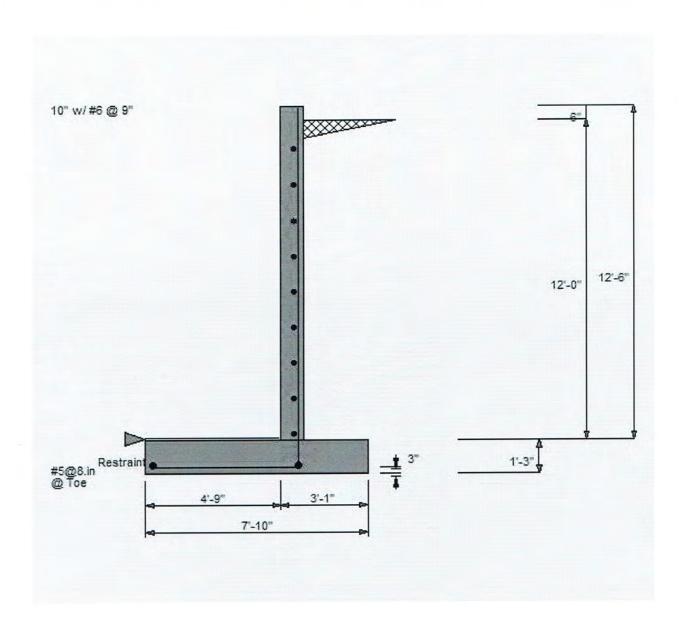
21.60 in

Hooked embedment length into footing for #6 bar specified in this stem design segment =

6.00 in

12' Cantilever Wall w/Slab on Grade Title Job# Dsgnr: CRB

Page: Date: 2 OCT 2014


Description.... Cantilever Retaining Wall w/Slab on Grade

This Wall in File: h:\retaining wall calculations\retaining wall - slab on grade\cantilever retainin

RetainPro 10 (c) 1987-2014, Build 10.14.9.29 License: KW-06060889 License To: Buker Engineering, LLC

Cantilevered Retaining Wall Design

Code: IBC 2012,ACI 318-11,ACI 530-11

